
Part II: First Law of 
Thermodynamics 

 
Lecture 6:  

• Some Consequences of the First Law 
• Heat Capacity 
• Specific heat Capacity 
• Internal Energy, Enthalpy, and 

Specific Heats of Solids and Liquids 
• Some Applications of the First Law 
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 Some Consequences of the 
First Law 
 
2-5 Heat Capacity 
 
We have already defined heat capacity as the amount of heat required 
to raise the temperature of a mass of a system by 1°C. It is denoted 
by C.  

Q = C ∆T          2-37 
 
Where Q is in kJ, C in kJ/kg.0C. 
 
Equation 2-37 is a general definition of heat capacity and it implies 
that the heat capacity of a system depends not only on the heat-
absorbing ability but also, in a simple way, on the amount of 
substance present.  
 
• When defining heat capacity in terms of material in the system, we 

have:  
o  Specific heat capacity. Heat absorbed by 1 kg of material that 

undergoes a rise in temperature of 1°C.  
o Molar heat capacity. Heat absorbed by 1 kg mol of material that 

undergoes a rise in temperature of 1°C. 
• When the heat capacity is essentially constant between the two 

temperatures T1 and T2,  
 

Q = C ∆T  = C ( T2  - T1)     2-37a 
 

See figure (it is numerically equal to the area under the curve). 
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If C varies significantly with temperature, then: 

∫=
2

1

dTTCQ )(       2-38 

and again, it is numerically equal to the area under the curve. 
 
• We can express C by an empirical power series  such as C=a+bT+cT-2 

Then, 
 
 
 
 

Note: If the heat capacity cannot be expressed analytically as a function of 
temperature and experimental data is available, Q can be evaluated from the C vs. 
T graph. If a suitable function is available, the integration can be performed 
numerically by the use of integration rules. 

 
2-6 Specific Heat Capacity 
 
We already know that the quantity of heat exchange with a system depends 
on the path, thus, for different paths, C will be different. 
 

(i) At constant volume, over a temperature range in which the heat capacity 
is constant, Equation 2-37 becomes 

 
QV = CV ∆T          2-39 

And because the volume is constant, QV = ∆U, thus 
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∆U = CV ∆T          2-40 

 
If CV is the molar heat capacity, then for n moles, 

 
∆U = n CV ∆T          2-41 

 
If, over the temperature range concerned, CV is not constant 

∫==∆
2

1

dTTCQU VV )(       2-42 

 
   (ii) At constant pressure, we have similarly  
 

QP = CP ∆T          2-43 
 
If in Eq 2-36 there are no other types of work involved except boundary work, 
then QP = ∆H, and thus, for a constant CP 
 

∆H = CP ∆T          2-44 
and for n moles 

∆H = nCP ∆T          2-45 
and if CP varies, then 

2

1

( )p pH Q C T dT∆ = = ∫       2-46 

   (iii) Relationship between constant pressure CP and constant volume CV. 
For the molar heats, we have 

CP = CV + R.      2-47 
 
The ratio of the 'heat capacities' is given by 

γ = CP / CV      2-48 

 6-4



 
For monatomic gases γ =1.67. 
 
Eq. 2-47 holds approximately for dia- and polyatomic gasses  
 

  Heat capacity ratio of some important gases at 0.1 MPa pressure 

Specific heat 
(kJ kg-1 K-1) 

Molar heat capacity 
(Jmol-1 K-1) Gas 

Cv Cp Cv Cp

Cp-Cv 
(Jmol-1 K-1) 

γ 

 Monatomic       

 He 3.138 4.812 12.468 20.794 8.326 1.67 

 Ne 0.619 1.029 12.468 20.794 8.326 1.67 

 A      1.67 

 Hg      1.67 

 Na      1.67 

 Diatomic       

 H2  0.014    1.40 

 N2 0.740 1.038 20.753 29.079 8.326 1.40 

Air 0.718 1.005 20.8 29.114 8.314 1.4 

 O2 0.648 0.912 21.046 29.413 8.368 1.40 

 Triatomic       

 CO2 0.640 0.833 28.451 36.945 8.494 1.30 

 H20 1.464 2.017 25.941 34.309 8.368 1.32 

 Polyatomic       
 C2H6 1.435 1.724 43.095 51.672 8.577 1.20 

 
Example 2-11 
Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change 
in internal energy of air per unit mass, using (a) the functional form of the specific heat 
and (b) the average specific heat value. 
 
Solution 
At specified conditions, air can be considered to be an ideal gas since it is at a high 
temperature and low pressure relative to its critical-point values (Tcr = -147°C, Pcr = 3390 
kPa for nitrogen, the main constituent of air). The internal energy change ∆u of ideal 
gases depends on the initial and final temperatures only, and not on the type of process. 
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Thus, the solution given below is valid for any kind of process. 
 

(a) The change in internal energy of air, using the functional form of the specific 
heat, is determined as follows. The CP mol(T) of air is given in the form of a third-
degree polynomial expressed as 
 

CP mol (T) = a + bT + cT2 + dT3 

 

where a = 28.11, b = 0.1967 x 10-2, C = 0.4802 x 10-5, and d = -1.966 x 10-9.  
Next we have 
 

CV mol (T) = CP mol – Rmol  = (a – Rmol ) + bT +cT2 + dT3

 
Replacing it in Eq. 2-42 and performing the integral, we get  
 

∆U = 6447.15 kJ / kmol 
 

The molar mass of air is 28.97 kg /kmol, thus, the change in internal energy per 
unit mass is: 

∆u = ∆U / M = 225.55 kJ / kg 
 

(b) The average value of the constant-volume specific heat Cv.av is determined from 
the values at 300 and 600 K. At the average temperature 450 K tables give the 
value to be 
 

Cv.av = CV@450K = 0.733 kJ/(kg . K) 
 

Thus ∆u = Cv.av  (T2 – T1) = 219.9 kJ / kg 
 

 This answer differs from the above result by only 1.2 percent. This close 
agreement is not surprising since the assumption that Cv varies linearly with 
temperature is a reasonable one at temperature intervals of only a few hundred 
degrees. If we had used the Cv value at T1 = 300 K instead of at Tav, the result 
would be 215.4 kJ/kg, which is in error by about 3 percent. Errors of this 
magnitude are acceptable for most engineering purposes. 
 

 
Example 2-12 
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A piston-cylinder device initially contains 0.5 m3 of nitrogen gas at 400 kPa and 27°C. 
An electric heater within the device is turned on and is allowed to pass a current of 2 A 
for 5 min from a 120-V source. Nitrogen expands at constant pressure, and a heat loss of 
2800 J occurs during the process. Determine the final temperature of the nitrogen. 
 
Solution 
This time, we take the nitrogen in the piston-cylinder device as our system. At the 
specified conditions, the nitrogen gas can be considered to be an ideal gas since it is at a 
high temperature and low pressure relative to its critical-point values (Tcr = -147°C, Pcr, = 
3390 kPa). 
 
First, let us determine the electrical work done on the nitrogen: 
 

We =V I ∆t = 72 kJ 
 
The mass of nitrogen is determined from the ideal-gas relation  

 
m = PV / RT = 2.25 kg 

The conservation of energy gives: 
Q + We + Wb = ∆U 

 
For a constant pressure process of a closed system,  

 
Q + We = ∆H = mCP (T2 – T1) 

 
 
Using the value of CP =1.039kJ/kg from the table, we get T2 = 56.6 0C 
 
 
 

2-7 Internal Energy, Enthalpy, and Specific Heats of Solids 
and Liquids 
 
 

The difference between CP  and CV for liquids and solids is rather small, and, except for 
where high accuracy is required, it is sufficient to take CP = CV. The reason for this is 
that the thermal expansion coefficients of liquids and solids are very small, so that the 
volume change on increasing the temperature by 1°C is very small; correspondingly the 
work produced by the expansion is small and little energy is required for the small 
increase in the spacing of the molecules. 
 
 
A substance whose specific volume (or density) is constant is called an incompressible 
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substance. The specific volumes of solids and liquids essentially remain constant during 
a process. Therefore, liquids and solids can be approximated as incompressible 
substances without sacrificing much in accuracy. The constant-volume assumption 
should be taken to imply that the energy associated with the volume change, such as the 
boundary work, is negligible compared with other forms of energy. Otherwise, this 
assumption would be ridiculous for studying the thermal stresses in solids (caused by 
volume change with temperature) or analyzing liquid-in-glass thermometers. 
For solids and liquids,  
 

CP = CV = C       2-49 
 
Example: CP for asphalt is 0.920 kJ / kg . oC 
 
Like those of ideal gases, the specific heats of incompressible substances depend on 
temperature only.  
 

dU  = Cv dT = C(T) dT     2-50 
 
 
The change in the internal energy between two states is 
 

∫=−=∆
2

1

12 dTTCUUU )(      2-51 

 
 
For small temperature intervals, we can use an average value for C 
 

∆U ≈ Cav(T2 – T1)      2-52 
 
For the enthalpy, by using its definition, we get  
 

∆H = ∆U + V∆P             (kJ)    2-53 
 

The second term in the above equation is often small compared with the first term and 
can be neglected without significant loss of accuracy. 
 

 
2-8 Heat Conduction 
 
We have seen that the for a temperature gradient dT / dx the heat flows as 
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dx
dTkAQcond −=                                           (2-8) 

 
where k is the thermal conductivity of the material (in  W/m 0C). 
 
A substance with a large thermal conductivity is known as a thermal conductor, and one 
with a small value of k as a thermal insulator. The numerical value of k depends on a 
number of factors, one of which is the temperature. If the temperature difference 
between parts of a substance is small, k can be considered to be almost constant 
throughout the substance.  
 
Examples of practical situations. In all cases, we shall assume that k is constant 
throughout the conducting substance. 
 

(a) Linear flow of heat perpendicular to the faces of a slab. If the temperature 
difference T1 – T2 and the thickness d are small, then 

 

d
TT

kAQ 21 −
=  

(b) Radial flow of heat between two coaxial cylinders. If the conducting material lies 
between an inner cylinder of radius rl  kept at temperature T1 and an outer cylinder of 
radius r2, and temperature T2  both of length 1, then  there will be a steady radial flow 
of heat at the constant rate.  
 The area through which heat flows depends on the distance from the cylinders. For a 
distance r from the axis of the cylinders, the area is A = 2π rl and for a thickness dr, the 
temperature gradient is dT / dr. Thus, 

2

2

dTQ k rl
dr

Q drdT
lk r

π

π

= −

= −
 

 
           and after integration: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

1

2
21 2 r

r
lk

QTT ln
π  
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(c) Radial flow of heat between two concentric spheres. If the conducting material 
lies between an inner sphere of radius r1 held at constant temperature T1 and an 
outer sphere of radius r2 held at constant temperature T2 there will be a steady 
radial flow of heat at a constant rate. In this case by following a procedure similar 
to the concentric cylinders we get: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

21
21

11
4 rrk

QTT ln
π  
 

2-9 Reversible and irreversible processes 
 
Reversible isothermal process 
 
An ideal gas is placed in a cylinder with a piston, and expands very slowly and keeps the 
temperature constant all the time by either withdrawing heat from, or supplying heat to 
the system. Let P1 V1 T1 be the initial state and P2, V2, T2 be the final state. 
 
For a perfect gas, ∆ U = CV ∆T = 0, and from the first law we have Q + W = 0 
 
The work done by the gas for a small increase in volume dV is dW = - P dV 
The total work between the two states is 

∫−=−=
2

1

PdVQW       2-54 

which for ideal gases can be written as 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=−=

2

1 1

2

V
VnRT

V
dVnRTQW ln  

 
Since at constant temperature P1 V1 = P2 V2

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=−= ∫

2

1
2

1 1

2

P
PnRT

V
VnRT

V
dVnRTQW lnln  

 
This equation can be also written as 
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⎟
⎠

⎞
⎜
⎝

⎛=
nRT
WPP exp12       2-55 

 
 

Irreversible isothermal process   
 
The numerical value of the work done on the surroundings, whether positive 
or negative, is always a maximum in reversible process. This is, in fact, true 
for any kind of work and for any path. Since only irreversible processes are 
observable (the reversible processes are the hypothetical processes) we 
conclude that all observable processes produce less work than the maximum 
work, and result in dissipation of work as heat. 
 
Adiabatic irreversible process (Q = 0) 
 
In this case   

∆U = W      2-56 
 
The change ∆U can be calculated by considering that each individual small 
adiabatic change (∆U)A is the sum of  an isocoric (∆U)V and an isothermal 
process (∆U)T, thus 
 

(∆U)A = (∆U)V + (∆U)T 

 
For an isothermal process (∆U)T = 0 

∫=∆
2

1

dTTCnU VV )()(     2-57 
thus  

∫=∆
2

1

dTCnU VA)(  
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so the general equation for the adiabatic change gives 
 

WPdVdTCnU V =−==∆ ∫∫
2

1

2

1
    2-58 

 
Example 2-13 
5 mol of an ideal monatomic gas, with the specific heat at constant volume being 20.92 
J mol-1 K-1, expands irreversibly but adiabatically from an initial pressure of 2.02 MPa 
against a constant external pressure of 0.101 MPa until the temperature drops from the 
initial value of 27°C to a final value of 7°C. How much work has been done in the 
process? What is the final volume? 
 
Solution 
Eq. 2-58 gives ∆U = n CV (T2 – T1) = -2.09 kJ which is equal to the work done W. 
The final volume can be found as follows: 
 

W = -Pext (V2 – V1) = -2.09 kJ 
so  

(V2 – V1) = 0.02 m3 

 
P1 V1 = nRT1 , that give for V1 = 0.006 m3, so V2 = 0.026 m3

 
Adiabatic reversible process (Q = 0) 
 
For ideal gases, the adiabatic processes are described by (see eq. 1-60) 
 

PVγ = a constant                                            2-59 
 

TVγ-1 = a constant                                                   2-60 
 

where γ = CP / CV , and γ - 1 = R / CV . 
 
For van der Waals gases, the above equation becomes: 
 

T (V – b)γ-1 = a constant                                           2-61 
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For ideal gases, by replacing V with nRT/P in  Eq.2-59 we get 

 
Tγ P1-γ = const   2-62 

or 
T P1/γ  - 1 = a constant   2-63 

 
For real gases, some of the adiabatic expansion forms are: 
 

constbV
V
aP

const
V
aPT

constbVT

=−⎟
⎠

⎞
⎜
⎝

⎛ +

=⎟
⎠

⎞
⎜
⎝

⎛ +

=−

−

−

γ

γ

γ

)(

.

.)(

2

11

2

1

   2-64 

 
The work done in a adiabatic expansion can be calculated from  

∫−=
2

1

PdVW    2-65 

where P is (const. x V-γ) which gives  
 

[ ] 2

1

1

1
1 V

VCVW γ

γ
−

−
−=     2-66 

where C is a constant. This becomes 
 

 )( 11221
1 VPVPW −
−

−=
γ     2-67        

 
In adiabatic processes, from ∆U = Q + W, Q = 0, we get W = ∆U 
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But ∆U = CV ∆T, thus,  

W = - CV ∆T      2-68 
And for a real gas 

W = - CV ∆T + a ∆ (1/V)     2-69 
 
 

Enthalpy (H = U + PV) 
 
For an isobaric process the first law can be written as 
 

∆U = Q + W = QP – P (V2 –V1) 
 
rearranging, we get 

∆H = QP      2-70 
Thus,  
 

• The heat absorbed in any reversible isobaric process is equal to the difference 
between the enthalpies of the system in the end states of the process.  

 
• Enthalpy, like energy U or temperature T, is a function of state of the system alone 

and is independent of the path through which that state is reached.  
 

 
Because QP =CP ∆T = ∆H 
 
We get  

CP = (∂H /∂T)P      2-71 
 
Consider a stationary closed system undergoing a constant-volume process (Wb = 0). 
The first-law relation for this process can be expressed in the differential form as 

 
 δ Q - δ Wother = dU 
 

The left-hand side of this equation represents the amount of energy transferred to the 
system in the form of heat and/or work. From the definition of CV , this energy must be 
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equal to CV dT, where dT is the differential change in temperature. Thus, 
 

CV dT = dU  at constant volume 
In other words, 

CV = (∂U / ∂T )V      2-72 
 

For ideal gases, the work done in an isothermal process is given by (see Part I) 
 

∫−=
2

1

PdVW    (2-65) 

 

i

ff

i

f

i
ext V

V
nRT

V
dVnRTdVPW ln−=−=−= ∫∫  

 
For real gases, in order to calculate the work in an isothermal process, from the van der 
Waals equation for n = 1 

( ) RTbV
V
aP =−⎟
⎠
⎞

⎜
⎝
⎛ + 2  

 
we take the pressure out and get 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
121

2

V
a

V
a

bV
bVRTW ln     2-73 

Van der Waals equation gives 

V
a

bV
RTVPV −
−

=  
 
It can be shown that for real gases there is a small change in the internal energy with the 
change in the volume at constant temperature: 
 

(∂U / ∂V)T = a / V2 

 

Thus, for an isothermal process,  
∆H = ∆U + ∆(PV) 
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which leads to 

1212

2211
V

a
V

a
bVbV

bRTH +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=∆      2-74 

Joule and Joule – Thomson experiment 

 is interesting to see how the energy of a gas depends on its volume, or how 

nown 

oule experiment 

• Two containers, one containing a gas at a given pressure and temperature and the 

 

 

 
It
the enthalpy of a gas depends on pressure. For this purpose, Joule and Gay-
Lussac carried out a series of experiments and later Joule and Thomson 
carried out another set of experiments. These two experiments are now k
as the Joule experiment and the Joule-Thomson experiment. 
 
J
 

other evacuated, joined by a tube provided with a stopcock are immersed in a 
calorimeter bath  
 

 
 

• he stopcock is opened, the gas is allowed to expand freely from one container 

 
 It is observed that, when ordinary gases at moderate pressures are subjected to the 

T
into the other and then the net temperature change attending the process is 
measured after reaching thermal equilibrium.  

•
Joule experiment, the net temperature change is very small so that we can assume 
that the temperature change is actually zero. 
 

• here is no work done by the system against an external pressure, thus W = 0 

• here no heat exchanged with the environment, thus Q = 0 

T
 
T
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• In conclusion, 
∆U = Q + W = 0 

and the energy of an ideal gas is a function of temperature only and it does not depend 
 

on its volume. It follows that C  depends on T only. 
 

V

dU = CV(T) dT 

 
oule – Thomson experiment 

Joule and Thomson devised another experiment in such a way that the temperature 

 

J
 

change due to expansion of a gas would much more accurately be measured. 
 

 
 

ote: The results of this experiment provide information about intermolecular 

A cylindrical tube, insulated to prevent any transfer of heat to the surroundings, is fitted 

e T1, 

P1 

me 

n 
 

N
forces. This information can be used to in the liquefaction of gases such as 
hydrogen and helium.  
 

with two pistons and a porous plug which is capable of allowing gas to flow slowly 
through it. The left tube is initially filled with a certain amount of a gas at temperatur
volume V1 and pressure P1 ; the right tube is empty. The gas is then allowed to flow 
slowly through the plug in such a way that its pressure in left tube is kept constant at 
by the movement of the piston towards the plug. At the same time the right piston is 
adjusted in such a way that the low pressure P2 (< P1) is kept constant. The final volu
in right tube after all the gas has streamed through the porous plug, is V2 and its 
temperature T2. The significant datum obtained in this experiment is the change i
temperature due to flow of the gas through the porous plug. This can be obtained by
measuring temperatures T1 and T2. 
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In this experiment: 

ange in the internal energy of the system is due to the work done 

W = P1 V1 – P2 V2
But  

∆U = U2 – U1 = P1 V1 – P2 V2
By rearranging we get 

∆H = 0  

This shows that the Joule-Thomson experiment is carried out under constant-enthalpy 

• Q = 0 
• The ch

 

 

conditions. 
 
Note:  

hen the gas involved is perfect, H is a function of T only, and therefore ∆H = 0  

       
er than T1. At 

 
 

 
he Joule-Thomson coefficient (µ)  is defined as the change in temperature per unit 

 

• W
   implies that ∆T = 0 , thus no temperature change for a perfect gas.  
• For a real gas it generally depends on whether T2 is greater or small

the critical temperature (called the Joule-Thomson inversion temperature). Above
this temperature there will be heating; below this temperature there will be cooling
upon Joule-Thomson expansion. 

T
change in pressure when the enthalpy is constant. In terms of partial derivatives 

    2-75 
 

he sign of the coefficient indicates if the gas cools or warms up upon expansion. 
ly, 

 
 we consider H as a function of temperature and pressure, the total differential of H is 

T
• if the gas cools in the process of streaming through the plug, µ >0. Converse

when µ <0 there is an increase in temperature. 
 

If
given by 
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It can be shown that if Cp remains constant over a small temperature range, then (see 

2-76 
This is the equation for the differential Joule-Thomson effect

derivation in the text page 100) 
 
 
 

, ∆T being the increase i

.  

or a van der Waals gas, U is not a function of temperature only, whereas for an ideal 

U = U0 +CV T – a / V     2-77 

where U0 is a constant of integration. 

imilarly, the enthalpy for van der Waals gases is expressed as 

      2-78 
 

For a small pressure change, the expansion should still be at constant enthalpy,
 

2-79 
 

The left-hand side of Eq. 2 ans
 

n 
temperature for a change ∆P in pressure in the proximity of the temperature T. In their 
experiment, Joule and Thomson found that the decrease in temperature was 
proportional to the difference in pressure on the two sides of the porous plug
 
F
gas, U is a function only of temperature. It can be shown (see text page 102) that 
 

 

 
S

 
 

 thus 

H(P + dP, T + dT) = H(P, T).                    

-79 can be expanded by Taylor exp ion as  

 
 

Combining this with 2-79 gives 
  

 

0
T P

H HP T
P T

∂ ∂⎛ ⎞ ⎛ ⎞∂ + ∂⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠  

or 
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/
T P

T H H
P P T
∂ ∂ ∂⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠  

where it was assumed that  and same for T are much smaller than 1. 

By differentiating both sides of eq 2-78 with respect to P, we get 

/P P∂
 

 

RT
ab

P
H 2

−=⎟
⎠

⎞
⎜
⎝

⎛
∂  

T

∂

 
which leads to  

PC
RTab

P
T /2−

−=
∂
∂

 

 
 

So, for a Joules-Thomson expansion of a van der Waals gas, 
 

2
P

T H

a H Tb C
RT P P

∂ ∂⎛ ⎞ ⎛ ⎞− = = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

 
At the inversion temperature T  µ = ∂T/∂P = 0, so we ci an find  
 

Ti = 2a / Rb                                                         2-80 
 

• t this temperature the Joule-Thomson effect is zero; no change in temperature 
ting for Joule-

homson expansion 
 
• vidently the Joule-Thomson effect depends on both a and b, even though it may 

e. 

• . 2-78 with respect to T, and replacing (∂H / ∂T) by CP, we get 
 

 
This shows that in the case of a van der Waals gas the difference between Cp and Cv is 
gre

A
occurs on expansion. Below Ti there is cooling and above it hea
T

E
depend only on a as it is the cohesion force a/V2 against which work is to be don
 
By differentiating Eq

CP – CV = R + 2aP / RT2      2-81 

ater than that in the case of an ideal gas. 
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Some Applications of the First Law 
 

 
 

 
he relation between the internal 

energy U and the state variables of the system: pressure, volume and 
temperature. 

of heat dQ becomes 

 
 and can be applied to any 

The first law of thermodynamics is 

             dU = dQ +dW                                            2-82

The energy equation of a system is t

 
U = f(T, V) and dW = -P dV 
 
The quantity 

 
                   2-83 
 

This equation is a general equation
substance and to any reversible process. 
 

. V = constant  A
 

And from Eq, 2-83 we obtain the eq. for CV  
 

 
 

B. P = constant   
 

And Eq. 2-83 becomes 
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                2-84 
 

or 
 

                   2-85 
 

C. T = constant 

. 2-83 becomes 
 

 
qE

T
T

TT dV
dV
dUdVPdQ )()()( ⎟

⎠

⎞
⎜
⎝

⎛+=    2-86 

 

q. 2-83 becomes 
 

D. Q = 0 
 
E

 
                              2-87 
 

or 

    2-88  
 

  dV  
 
 

 
U = f(T, P) 
 
Differentiating
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and similarly dU, the first law can be written as 

             
 2-89 

 

t 

 

  P = constan
 
 
    2-90 

nd Eq. 2-89 becomes 
 

a
 

dP
P
VU ⎤⎡ ⎞⎛ ∂⎞⎛ ∂

P
dTCdQ

TT
P ⎥

⎦
⎢
⎣

⎟
⎠

⎜
⎝ ∂

+⎟
⎠

⎜
⎝ ∂

+=
    2-91 

 
 = constant

 

V   
 

    2-92 

r 
 

 
o

     2-93

imilar equations can be obtained for U = f (P,V) 

 
 

 
S
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Internal Energy of Gases 
 

 will be shown later that for any substance 
 

2-94 
we can compute (dU / dV)T 
 
For one mole of ideal gas, from PV = RT we get V 

– P = 0 
 

his shows that at constant temperature the internal energy of an ideal gas is 

By differentiating with respect to P, we also get; 
 

(dU / dP)T = 0. 
 

In conclusion, the internal energy of an ideal gas depends on temperature 

It

 
 
 

(dP / dT) =R / V, thus 
 

 
P + TR / V = P (dU / dV)T = -

T
independent of volume or density.  

only. Thus 

 
becomes 

dT
dUCV =        2-95 

 

0

     2-96 

where U0 is a constant. 

and in general 

dTCU V∫+= 0

T

U
T
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For a mole of van der Waals gas 
 
 
 

 
By differentiating with respect to T at constant volume 
 
 
 

and substituting in Eq.2-94, we get 
 

 

2V
a

dV
dU

T
=⎟

⎠

⎞
⎜
⎝

⎛
 

 
e have W

dV
dV
dU

dT
dUdU

TV
⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=  

 
becomes 

dU = CV dT + (a / V2) dV 
hus T

 

)(∫ −++=
T

T
V V

a
V
adTCUU

0
0

0     2-97 

 
This shows that the internal energy of a van der Waals gas depends on its 

d temperature. Since the van der Waals constant b is a measure of 
molecular diameter only, it does not affect the energy, and hence it does not 
appear in the energy equation. 
 

volume an
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