CMSC 303 Introduction to Theory of Computing, VCU Fall 2017, Assignment 3 Due: Thursday, September 28, 2017 at start of class

Total marks: 71 marks +7 bonus marks for LaTeX.
Unless otherwise noted, the alphabet for all questions below is assumed to be $\Sigma=\{0,1\}$.

1. [12 marks] This question develops your ability to devise regular expressions, given an explicit definition of a language. For each of the following languages, prove they are regular by giving a regular expression which describes them. Justify your answers.
(a) $L=\{x \mid x$ begins with a 0 and ends with a 1$\}$.
(b) $L=\{x \mid x$ contains at least four 0 's $\}$.
(c) $L=\{a, a a, \epsilon\}$.
(d) $L=\{x \mid$ the length of x is at most 4$\}$.
(e) $L=\{x \mid x$ doesn't contain the substring 110 $\}$.
(f) $L=\{x| | x \mid>0$, i.e. x is non-empty $\}$.
2. This question tests your understanding of how to translate a regular expression into a finite automaton. Using the construction of Lemma 1.55, construct NFAs recognizing the languages described by the following regular expressions.
(a) [5 marks] $R=\emptyset^{*}$.
(b) $[15$ marks $] R=(0 \cup 1)^{*} 111(0 \cup 1)^{*}$.
3. [15 marks] This question tests your understanding of how to translate a finite automaton into a regular expression. Consider DFA $M=(Q, \Sigma, \delta, q, F)$ such that $Q=\left\{q_{1}, q_{2}, q_{3}\right\}, q=q_{1}, F=\left\{q_{1}, q_{3}\right\}$, and δ is given by:

δ	0	1
q_{1}	q_{2}	q_{2}
q_{2}	q_{2}	q_{3}
q_{3}	q_{1}	q_{2}

Draw the state diagram for M, and then apply the construction of Lemma 1.60 to obtain a regular expression describing $L(M)$.
4. [10 marks] This question allows you to practice proving a language is non-regular via the Pumping Lemma. Using the Pumping Lemma (Theorem 1.70), give formal proofs that the following languages are not regular:
(a) $L=\left\{w w w \mid w \in\{0,1\}^{*}\right\}$.
(b) $L=\left\{x \mid x \in\{0,1\}^{*}\right.$ is not a palindrome $\}$. Recall a palindrome is a string that looks the same forwards and backwards. Examples of palindromes are "madam" and "racecar".
5. This question further tests your understanding of the subtleties of the Pumping Lemma:
(a) [5 marks] Let $B_{1}=\left\{0^{k} 1 x 0^{k} \mid k \geq 1\right.$ and $\left.x \in \Sigma^{*}\right\}$. Give a formal proof that B_{1} is not a regular language.
(b) [7 marks] Let $B_{2}=\left\{0^{k} x 0^{k} \mid k \geq 1\right.$ and $\left.x \in \Sigma^{*}\right\}$. Show that B_{2} is a regular language.
(c) We just proved in part (b) above that B_{2} is regular. Consider now the following argument, which claims to prove that B_{2} is, in fact, not regular.
Assume B_{2} is regular, and let p be the pumping length. Consider string $s=0^{p} 10^{p} \in B_{2}$, and decompose it as $s=x y z$ with $x=\epsilon, y=0^{p}, z=10^{p}$. Then, pumping s down by setting $i=0$ yields string $s^{\prime}=x y^{i} z=x y^{0} z=10^{p} \notin B_{2}$. Hence, by the Pumping Lemma, we have a contradiction. We conclude that B_{2} is not regular.
i. [2 marks] What is wrong with this proof?

