CMSC 303 Introduction to Theory of Computing, VCU Fall 2017, Assignment 3 Due: Thursday, September 28, 2017 at start of class

Total marks: 71 marks + 7 bonus marks for LaTeX.

Unless otherwise noted, the alphabet for all questions below is assumed to be $\Sigma = \{0, 1\}$.

- 1. [12 marks] This question develops your ability to devise regular expressions, given an explicit definition of a language. For each of the following languages, prove they are regular by giving a regular expression which describes them. Justify your answers.
 - (a) $L = \{x \mid x \text{ begins with a } 0 \text{ and ends with a } 1\}.$
 - (b) $L = \{x \mid x \text{ contains at least four } 0\text{'s}\}.$
 - (c) $L = \{a, aa, \epsilon\}.$
 - (d) $L = \{x \mid \text{the length of } x \text{ is at most } 4\}.$
 - (e) $L = \{x \mid x \text{ doesn't contain the substring } 110\}.$
 - (f) $L = \{x \mid |x| > 0, \text{ i.e. } x \text{ is non-empty}\}.$
- This question tests your understanding of how to translate a regular expression into a finite automaton. Using the construction of Lemma 1.55, construct NFAs recognizing the languages described by the following regular expressions.
 - (a) [5 marks] $R = \emptyset^*$.
 - (b) [15 marks] $R = (0 \cup 1)^* 111(0 \cup 1)^*$.
- 3. [15 marks] This question tests your understanding of how to translate a finite automaton into a regular expression. Consider DFA $M = (Q, \Sigma, \delta, q, F)$ such that $Q = \{q_1, q_2, q_3\}, q = q_1, F = \{q_1, q_3\}$, and δ is given by:

δ	0	1
q_1	q_2	q_2
q_2	q_2	q_3
q_3	q_1	q_2

Draw the state diagram for M, and then apply the construction of Lemma 1.60 to obtain a regular expression describing L(M).

- 4. [10 marks] This question allows you to practice proving a language is non-regular via the Pumping Lemma. Using the Pumping Lemma (Theorem 1.70), give formal proofs that the following languages are *not* regular:
 - (a) $L = \{www \mid w \in \{0, 1\}^*\}.$
 - (b) $L = \{x \mid x \in \{0,1\}^* \text{ is not a palindrome}\}$. Recall a palindrome is a string that looks the same forwards and backwards. Examples of palindromes are "madam" and "racecar".

- 5. This question further tests your understanding of the subtleties of the Pumping Lemma:
 - (a) [5 marks] Let $B_1 = \{0^k 1 x 0^k \mid k \ge 1 \text{ and } x \in \Sigma^*\}$. Give a formal proof that B_1 is not a regular language.
 - (b) [7 marks] Let $B_2 = \{0^k x 0^k \mid k \ge 1 \text{ and } x \in \Sigma^*\}$. Show that B_2 is a regular language.
 - (c) We just proved in part (b) above that B_2 is regular. Consider now the following argument, which claims to prove that B_2 is, in fact, not regular.

Assume B_2 is regular, and let p be the pumping length. Consider string $s = 0^p 10^p \in B_2$, and decompose it as s = xyz with $x = \epsilon$, $y = 0^p$, $z = 10^p$. Then, pumping s down by setting i = 0 yields string $s' = xy^i z = xy^0 z = 10^p \notin B_2$. Hence, by the Pumping Lemma, we have a contradiction. We conclude that B_2 is not regular.

i. [2 marks] What is wrong with this proof?