1 The Linearized Einstein Equations

1.1 The Assumption
1.1.1 Simplest Version

The simplest version of the linearized theory begins with flat Minkowski space-
time with basis vectors 9

nT Ok
and metric tensor components
-1 for p=v=20
= 0 for WtV
1 for pu=v=123

nuu

and assumes that the actual spacetime metric has the form

gMV = 77;,“/ + h’MV

where the h,, are all much less than 1. One then makes this substitution
everywhere in the theory and discards any terms that contain more than one
factor of h,,. For example, the exact expression for the metric compatible
connection coefficients in the holonomic frame

a 1 oo
[y = 59 (04905 + 08970 — o 9p)

becomes just

1 (070
577 (a'vhﬂﬁ + 3ﬁh'w - aﬂhﬁv)

and the exact expression for the curvature tensor components

I‘lin aﬁ’y =

R = 0I5 = 9,1%, + 195,17 5, =T, 1%y,
loses the bothersome products of connection coefficients and becomes just

Rlinaﬂuu = 8urlinaﬁy - aurlinaﬁu-

1.1.2 Fancier Versions

Instead of simply counting factors of h and throwing away terms with too many,
we can be more systematic and imagine a one-parameter family of metric tensors
9w () with

9uv (0) = Nuw

g/ﬂ/ (8) = 77;w + EhHV
and then expand everything as a Taylor Series in the parameter €. That is just

the same as taking variational derivatives with

5gul/ = h;tu



and

Din%py = 0%,
Rlina,ﬁ;u/ = 6Ra,8u,1/

1.2 Coordinate or Gauge Variations
1.2.1 From Coordinate Transformations

Suppose that the coordinates are varied at the same time that the metric tensor
is varied. Thus, the coordinates become

T, + €t

Ozt ox¥
80t = g I G

Solve the coordinate relation and take the partial derivatives.

o =gt — &t

I ,
% =01 — eD "
axl/ V/ 12
m = (55/ — 585’6

Weird notation alert! Notice that the primes are attached to the components
and not to the indexes

(65, - 56@5“) G (6;’/ - 58[3/5”)

5 006% — 0ar€" 46 — 8 guuedprt” + 0 (£2)
9ap — 0" gup — 90 05" + 0 ()

= gag—¢€ (%EB + aﬁga)

ga/B/

Finally, putting in the metric variation

9ap = Nap + Ehaﬁ
as well, we get
Ja'g = naﬁ + Ehaﬁ — £ (8Q€B + aﬁga)
= MNap TE€ (ha,B —0ubp — aﬂfa)
Thus, the metric variation
59&[3 = ha[ﬁ - 8(155 - aﬁga

differs from the variation
5ga[3 = hag



by coordinate variations and therefore represents the same spacetime geometry.
A change of the form

haﬁ — ha,g — 8a§,3 - 6gfa
is called a gauge transformation because it should have no effect on the physics.
Note that this transformation is a special case of something we have seen

before: The Lie derivative of the metric tensor

"E&gab’ = _55;04 - fa;B
which expresses the result of dragging the metric along the integrals curves of
the vector field £. For a general variation of the metric, a change of the form

09ap = 09ap + £egap

is purely a coordinate or gauge transformation.

1.2.2 Gauge Conditions

It is useful to exploit the coordinate arbitrariness to simplify the metric varia-
tion. Define the trace reversal operation

1 log
Moy = Mag = 5 (077 Mya) 15

and notice that it has the properties
UPUMpa = _npaMpa

and

Mg = Mag
Now consider the conditions -
dphe” = 0.
If these conditions are not satisfied by h” perform a coordinate transformation
to

B;,LIJ = BMV - (al/g,u, + 8H£I/ - nuyapfp)
or, with one index raised,
o7 = ha” =07 (0560 + 0a&y — 10,0,
The conditions are then

aﬁﬁaﬁ - 77[”3/3 (87504 + 8&57 - na'yapfp) =0

or
17105 (040 + 0ay — 100y 0pE") = O5hs”
n°7050,&,, + 0705008, — 0" 0m0,0,E" = Osha’
177050,6, + 17 050aE, — 05030,6” = 0Ogho”
L B

0050, + 050at” — 00050,6° = dgha
07050, + 0a0pE” — 000,67 = shs”
050,¢, = 0sha”



Define the d’Alembertian operator
0 =n"1950,

and get a set of wave equations for the coordinate fluctuations that are needed
to satisfy these conditions:

Thus, the conditions -
Ipho” =0

can always be satisfied by an appropriate choice of coordinate variations.
Notice that the coordinate variations £, that are needed to satisfy the con-
ditions are determined only up to variations that satisfy

0¢, =0

(0%

Thus coordinate variations of this form preserve the gauge conditions.

1.3 Working Out the Linearized Curvature Components
1.3.1 The Full Riemann Tensor

Start with
Rlinaﬁpu = ap,l—‘linaﬁu - 8yrlillaﬁu

or equivalently
OR% g, = 0,61%g, — 0,61%g,,

where 1
5Faﬁy = Flina[ﬂu = 577&0 (auho'ﬁ + aﬁhlzo‘ - ao-hﬁu)
and L
o, = 577““’ (Ouhop + 0ghyue — Oshpy)
so that
1
R = 50 (O Ovhop + Ophuo — Oohpy) = 8, (Ouhop + Ophyo — Oshsy))
1 ao
= 57} (8“81,/10[3 + 8#6/311,,0 — auafhgl, — 6‘U8,thﬁ — (()L@Bhlw + auaffhﬁ/i)
1
= inw (0,08hve — 0,.05hp, — 0,08h,0 + 0,0,hp,)
or

6Ro—ﬁuy = % (8u85hw - 8M80hgy — Gﬁghw + Q&,hﬁu)



1.3.2 Contracted Curvature Tensors

Now contract to form the variation of the Ricci tensor

SRz = 6(9"" Ropu)
(097") Roppv + 970 Rop

Since we are varying around flat Minkowski spacetime, the first term vanishes
and we get

0Rp, = 77"”% (0u08hve — 0,05hpy — 0,08hus + 0,0,hp,)
= 5 O 7 0ubug) ~ 17D, — 050 (17 o) + 0, (17 Dshs)
Rearrange the terms.
20Rg, = 03 (" Ophve) + 0, (7" 0shpu) — 030, (N hue) — 17H0,0-h sy
Rename the dummy indexes to make terms look alike.
20Rg, = 03 (n°P0phue) + 0, (177 0,hss) — 080, (7" hys) — n°H 0,0 hpy

Define
h=n""h,e

and
n*9,0, =0

so the expression becomes
20Rp, = 03 (n°?0phus) + 0, (NP7 0phss) — 030 h — Ohg,,
Split the trace term into two terms.
1 1
25R51, = 85 (n“paphw,) — Qagauh + a, (Upaaphﬁg) — 58/3&,/1 — Dhﬁy

and then notice that partial derivatives are common between adjacent terms so
that

1 1
20Rp, = 0p (n"”é’phm - 28yh> +0, (nf“’aphﬁa - 285h) — Ohg,

Now notice that

and



so that the variation of the Ricci tensor becomes
25R5,, = 858pﬁl,p + 8V6,Jzﬁp — Dhﬁ,,
If we choose the gauge conditions

Oph,” =0

then the result for the Ricci tensor variation is just
1
0Rg, = —§Dh5,,

Since the Einstein tensor is just the trace reversed Ricci tensor

Ggl, = R@y

we can get the variation of the Einstein tensor with no more work:

1 -
(SGBV = —§Dh/jy

1.4 Linearized Einstein Equations
The linearized version of the Einstein equations
GHY = 8nkTH
is just
oGt = 8nkTH

or B
-0 = 16wkTH”

in the gauge specified by -
a,h* = 0.

Written out, the linearized equations are

2 2 2 2
_%’3“” + %ﬁ“v + 8872’3“" + %B“” = 167kT" (t, 2.y, z)

so it is very clear that we have a wave equation for each of the components.

2 Waves

2.1 Plane Wave Expansions
2.1.1 Transverse Waves

So long as these are waves in a flat background spacetime, it makes sense to
expand them in plane waves. A single plane wave would be

h* (k,z) = Re {&“”eikpxﬂ}



where the a*” are complex coefficients that contain the phase information as
well as the amplitude information. For such a wave, the gauge condition is

9,0 = Re [ia k7" } =0
so that we need the "transverse wave" condition
a’k, =0
and the d’Alembertian operator yields

O (k) = —n*Pkaksh™ (k,z)
= —(k-k)h" (k,z).

2.1.2 Remaining Coordinate Freedom

Where there is no stress-energy, the linearized system is solved by a single plane
wave with

kE-k=0

Some coordinate variations are still allowed.

Py = Ry = 80, — O, + 11, 0,6"

so long as
0g, =0

These variations preserve both the wave equation and the gauge condition. For
a single plane wave, take

£, =Re {Eueik”p}

with
k-k=0

so that
a'’ — at” — kMY — kYO it k0P

The gauge condition is preserved since
a'k, — @'k, —ik"0"k, — ik k00 + gtk k00
= —ik*lk, +intVk k0P
—ik* 0k, + k"0 k, =0

2.1.3 Radiation Gauge

One way to fix the remaining freedom is to require

a'® =0



Although it looks as if there are four conditions here, remember that we already
have one linear combination satisfied, namely

kuat® =0

To see what happens in detail, switch to a set of basis vectors that are aligned
with the wave so that d5 is in the propagation direction. In that case

and
ks = kg

The transverse wave condition then reduces to

a*? =a* =0

so that the new conditions are just these three.

dOO

C_Llo —

a = 0
After the new coordinate variation makes the replacement
at'’ — al” — ikt —ikV O it k0P
these conditions become

@’ — k%0 — ik 00 4 in"k,
atl — k0t
a* — ik’ = 0

The last two can only be solved for ¢! and ¢2
0t = gtk 2 = —ig20 /K0
The first condition becomes
a® — 2ik0° — ikol® —ik3l® =0

or
a% + ikol® — ikt =0

or
a” +i (kot® — k3t®) = 0

which can be solved for just

k’ofo — kgé?’ = g%



There is still one combination of coefficients unfixed, so we can impose one
more condition.
all 122 4% =0

which, after the replacement
at’ — alv — ikt —ikV e it k0P

becomes

a'' + @ +a% — 2030 — 3i (kol® + k3t®) =0

But
kol = kst® +ia*

so the resulting condition is
a' + a2 4+ a4+ 3a" —8ik33 =0

and can be solved for the last coordinate parameter:

/3 — _% (@' +a* + a* + 3a%)

2.1.4 Summary of Radiation Gauge

In terms of the original metric fluctuation field, the radiation gauge imposes the
conditions

Dah®? =0
h =0

and

h=0

Because all of the time components are set to zero, the conditions can be stated
in terms of just the space components

8aﬁab _ 0’ Bll + B22 + B33 =0

The first condition states that the spatial metric fluctuation is transverse to
the direction of propagation while the second says that it is trace-free. In a
coordinate system aligned with the wave so that 03 is the propagation direction,
the non-zero components of the metric fluctuation form a two-by-two symmetric
trace-free matrix

hin hia | 1 0 0 1
[hgl hm}_m[o —1]*’“[1 o]

We are left with just two dynamical degrees of freedom or polarizations.



2.2 Effects on Matter
2.2.1 Geodesic Deviation Equation

Recall the relative acceleration of freely falling particles in the form
a= K (n)

where K is a second rank tensor called the tidal force tensor given in terms of
the curvature tensor
K(n)=R(u,n)u

In a local Lorentz frame that is set up around one freely falling particle, the
relative acceleration of a neighbor at position

is then 5
d°z" . .
a2 Rlooja’

where t is the time in the local Lorentz frame and 7 are the space coordinates
of the neighboring particle in that frame.
Recall the linearized curvature components

5R6B;w = % (aﬂaﬁhw - 8uaahﬁu -0, aﬁhud +90, acrhﬁu)
so that the curvature in the wave becomes
R'ooj = Rioo;
= % (9000hj; — 0oO;ho; — 8,00ho; + 9;0ihoo)
In the radiation gauge, we just get one surviving term

1 0?
390"

2o 1 2
CL' = —g’ 7hji

dt? 2 ot?

This equation can be integrated with respect to time. If the neighboring particle

is at rest at position 2 (0) at the instant that the gravitational wave hits, then
its subsequent position will be

i
Ry =

SO

2 (t) = ' (0) + %xj (0) hyi

In a coordinate system adapted to the wave, with 2® = z the propagation
direction and z! = z and 22 = y the transverse directions, the particle position

10



will then be

w(t) = x(0)+ 5 (2(0)hn +y(0)ha)

— Nl =

y(t) = y(0)+ 3 ((0) b1z + 1y (0) hog)

Notice that all of the particle motion is perpendicular to the direction of
wave propagation, so this really is a transverse wave.

2.2.2 Interparticle Distances and Strain

So far, we just have a description of relative particle motion in terms of local
Lorentz coordinates. What does that mean for actual distances? Consider a
wave with ho; = 0 hitting a particle that is on the x—axis of the reference
particle in this adapted coordinate system. The distance between the particle
and the reference is

at) = =)V
0 (130

(a: (0) + %:c (0) hu> (1 + ;’“1)
= 2(0)(1+ h11) + o (h?)

Notice that there are two separate effects. The distance changes because the
metric tensor changes the amount of distance that is associated with each co-
ordinate interval. The distance also changes because the coordinate position of
the particle changes. Both effects are in the same direction and of equal size.
This calculation is a really good example of how important a plus or minus sign
can be. Had the sign turned out the other way, there would be no physical effect
at all.

In general, the metric fluctuation h;; becomes the actual strain (%) that is
imposed on objects in the path of the wave. For most instruments, that strain is
the quantity that is actually measured and is usually the quantity that is quoted
when predicting the strength of a possible gravitational wave. For example, the
1987a supernova in the Large Magellanic Cloud, should have sent out gravita-
tional waves that reached Earth with h;; on the order of 107'. A Michelson
Interferometer with arms 5,000 meters long that functions in the normal way
would be able to detect length changes of about 1% of a wavelength of light.
For light with a wavelength of 500 nm, the detectable strain would then be
500 x 10~? m divided by 5000 m or just 10719, Clearly, a useful Laser Interfero-
metric Gravitational Wave Observatory (such as LIGO) needs to function in a
far more sophisticated way than a normal Michelson Interferometer.

11



2.3 Stress-Energy of a Gravitational Wave
2.3.1 Going to Second Order

Consider a one-parameter family of spacetime metrics g, (¢) with

G (0) = Nuw
and 5
Guv
= h v
oe |y, "

where h,, is a gravitational wave that solves the linearized Einstein Equations
in the radiation gauge.

0

5-G" {9ap ()}

_ (v _
e =Gl {hap} =0

lin
e=0

Here, the curly brackets indicate a functional dependence that may include
derivatives and integrals of the argument.
Now refine the solution by adding the next term to the series expansion of
the metric.
Guv (€) = Ny + Ehyp + szhfy

and attempt to solve the next order Einstein Equation

82

@GW {9 (8)} =0

e=0

for the correction hffy) Notice that we want hffy) to be the correction to the

metric for € = 1 rather than a second derivative of g, (¢) with respect to .
Now rearrange the higher order Einstein Equation.
62

2 v
ot G A )

14 82 v
QG{J{H {hfﬁ)} + @GM {77/,1,1/ + shl“/}

82

v 8 v
S50 g @Y = 25 {n,, +sh3}

e=0

=0
so we need to solve

=0

v 82 v
2G{in {h((fﬁ)} + @G# {77;1,1/ + Ehﬂ’/} —o

Move the second partial derivative term to the right side of the equation

v 10% .,
chr {5} = - 552" {Nap + ehas}

e=0

Now we have a linearized Einstein Equation

v 2 v
alir {nG)} = smrtly

lin

12

e=0



with an effective stress energy tensor

1 92
TH = ——— ——G" {n,5 + chap
fr 167k 02 {as }5:0

due to the gravitational wave.

2.3.2 Calculating Second Order Curvature Components

Now recall that the Riemann tensor is given by
R%3y5 = 0,1%35 — 0,13y + T, 17 g5 — I'“ 5617 gy

with 1
I8y = 597 (04905 + 05970 — Do 9pr)

Here we will take the metric components to be

9ap = Nap T €hap

and wish to evaluate )

O
@Gl {77@/3 +€haﬁ}

Start with just the Ricci tensor

e=0

/LﬂguéRaﬂa[s

82 2
7R/LD {naﬁ —+ Ehaﬁ} = @g

O¢e?

e=0 e=0

For convenience, use dots to denote derivatives with respect to the pertur-
bation parameter ¢.

. aga,@’
Jap = Oz :ha,é’

g'uﬁ — _gupgpagaﬁ — _pMb
guﬁ = 7gupgpggo’5 - gupgpago’ﬁ
= W*h,” + 1 hP
= 2hM,h7P
o 1.0 1 oo
r By = 59 (8vgaﬁ + aﬁgva - 8agﬁ”/) + 59 (a“/hffﬁ + 8ﬁh“ﬂ7 - 80hﬁ“/)
o 1 o 1 s Qo 1 s o
gy = 59 (04908 + 089v0 — 0s9p+) + 59 (Oyhap + Oshyo — Oohpy) + 59 (Oyhop + Oghyo — Oohpy)

R\ (0v90 + 039vo — Dagsy) — h7 (Dyhep + Oghye — Oohpy)

Faﬁ,y 0 = —h%? (&thg + 8/31170 — 80]157)
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R%305 = 0ol %35 — 0,1%0 + 1% al% 35 + Tl 55 — I'%55T7 g — T%5517 5o
Roas = 0.1%5 —0,1%,
+Faoaroﬁé + Faoaraﬁé + Faoaraﬁts + Faaargﬁé
7f‘a061—\05a - Faaéf‘aﬂa - Faoéfaﬂa - Faoéfwﬁa
= 0a1%5 — 0, 7% 0 + 1%l 35 + T% ol 55 — 19677 30 — T%s17 50
+2FQUQF055 — Qf‘amgfaga
0 v « . v « " o vl pa
E(g“ﬁg "R%3as) = ¢" g R gas + 9" 4" R gos + 9" 9"° R® gas

Now take another derivative, but discard any term that will give zero for € = 0.
2

@ = gpﬁgmsRaBaé + g#ﬁgyéRaﬁaé

(9"P 9" R* os)

e=0
+3" g R o5 + 9" 4" R gas + 9" " R gas
— {2 (huﬁgms + guﬁhué) Raﬁaé + guﬁguééaﬁa(s} L_O
Since the connection coefficients vanish for ¢ = 0 there are some simplifications

R gas = 0a155 — 0,1 g0

e=0

Raﬁws = 8af"‘55 - 85fa5a + QFagafgﬁg — 2f‘a05f05a

e=0

82
) (guﬁgyéRaﬁaé)

- 92 (h”ﬁgl"s +gul3hu6) (&xfaﬁd _ 85f‘aﬁa)

de? e=0
978 (0a1 35 = 0,1 o + 20 (17 55 — 20517 5, )
Fore =0
fwgzéwwww+%%fmwg
M, = %nao(aah054-aﬂhaa-aghﬁa)

For waves in the radiation gauge, all of the terms in the second expression are
Zero, so

150 =0

1

3af‘a55 — Béfo‘ga = inaa (aaaghgg + 3a85h5g — 8a8,,h55 — aéaahgg — 858ghw, + aéaghga)

1
= 577&0 (aaaﬁhﬁa - 80480h55 - aéaﬁh(xg + aéaghﬁa)

1
= = (8a85h5“ — Dhﬁg — 85(95h + 858017,30)

2
1
5 (05 (0ahs®) + 0; (Dahs®) — 0,05h — Ohgss)
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For waves in the radiation gauge, all of these terms are zero, so

3(3[1;‘&55 - 851'“5,1 =0

0al s — 0,10 = —0a (h™ (Oshop + Oshse — Oshps)) + 05 (07 (Oahep + Oshas — Oshpa))
— (8ah) (B5hos + Oshso — Oshgs) — ho (950ahas + Isdahse — Dydahyss)
= —(0ah"?) (Oshop) = (0ah™) (Ophss) + (0ah™”) (Oshps)

—h*? (858ah(,5 + 8ﬁ8ah50— — agaxhg(s)

or, using the gauge conditions,
0aTs5 — 0,150 = —h* (050ahop + 050ahss — OsOuhips)

Now assemble what we have so far:
2

922 (Q“ﬁgwsRaﬁws) = g"Pg”? (8af‘a,86 — 0, 1% 4 2095017 55 — 2Fao5faﬁa)

e=0
= g"%g” (%f("ﬁs - staﬁa)
+2gpﬁgu§1'—\agall\aﬁ5 . Qg,uﬂguéfagéfaﬁa
= gy[}gué [_haa (a5aahoﬂ + 8ﬁ8ah60 - aoaahﬁé)]
+29"7 9T 017 35 — 267 9T 5517 g

Notice that the contracted connection coefficient is zero for radiation gauge
waves so that

92 .
= (979 R 0s)| = 99" [~h7 (00uhas + DsOahss — 0sDahss) — 25l o
e=0
or
2
@ (gﬂﬁgwsRaBaé) _ _nvéhoeaaaaxhua _ nuﬁhaaaﬁ&lhua — he79, W
e=0

_2,]7;1,,8171/5111a JSFUﬁa

That leaves the product of connection coeficient variations to work out.

. 1
Faaé = 57704) (8517';70 + aah(Sp - aphaé)
. 1
I = 5770’\ (Oaharg + 0ghar — Orhga)
. 1
%5178, = 577(1’)77”’\ (Oshpo + Oshsp — Ophos) (Oahrg + Oghax — Orhga)
4Fa65f‘05a = na’)n‘”aghpgaahw + n“pnﬂaghpaagha,\ — Uapna)‘aghpga)\hga

+0°P17 0y his s 0ahirg + 11720y hspOshar — 17PN g hspOrhpa
—0*" 072 0phosOahrg — NN phosOphar + 1 17 phosOrhsa

15



Reduce the number of indexes by using the metric to raise indexes wherever
possible.

AT 5150 = 05h™ Onhag + 0sh ghar — Osh* Orhsa
+05h5“0ah’ 5 + Oshs“Ogha” — 07 0phs*Oxhga
—naﬁﬁphk(gaahm — 8phA585h”,\ + 8ph>\56,\hpﬁ

Match up like terms.

AT 51% 50 = Osh® Dnharg — Osh Orhga — 072 0phsO\hsa — 1°P0,h* s0ahrs
+05h**0ghar — 0ph*s05hP \ + Ophs“Oha”
+05hs“0uh? 5 + 0ph s\’ 5
= —207%0,hs“Onhga + Osh™Oghar + 20,h> 500" 5

. . 1
—2n“ﬁn”5fa05F”5a = n“ﬁn”‘sndagh(;a@,\ hga — n“ﬁn”‘;@ph)‘ga)\hpﬁ — in“ﬁn”‘sﬁgho‘)‘ﬁﬁhw\
1
= 770, hYO\hH o — 6ph)“’8,\hp“ - §n“ﬁn”585h°‘)‘85ha>\

so that

2
522 (979" R 5as) = =R 050l 5 — PO Dg0uh" 5 — W Dy Ouh

e=0

1
+n7 9, R O\h* o, — O,hN O\hPF — §Mnwsa(;WaﬁhaA

2.3.3 The Short Wavelength Approximation

If we solve the second order system in detail, we will gain some useless infor-
mation at great cost along with the information that we really need. We will
obtain the nonlinear corrections to the rapidly fluctuationg gravitational wave
amplitudes. Since these amplitudes are typically around 107'° the nonlinear
corrections to them are of no interest at all. To get rid of this useless informa-
tion, perform a space-time average over a region that is long in comparison to
the period of the waves and larger in comparison to their wavelength and solve
the corresponding time averaged second order equations:

e {(n)} = @)

The time-averaged effective stress energy tensor is actually what we are inter-
ested in. It provides the average rate at which the gravitational wave transfers
energy and momentum.

The key idea for simplifying the effective stress energy is that any derivative
of a rapidly varying function f will average to zero, so

(0sf) = 0
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As a result, we can "integrate by parts" to obtain
(=1’ K 0504 h"y — NP h* D30ah” » — W™ Dy OuhH)
= 00ah7Osh” s + NPT D5hY 5 + Duh®T Dy kM

which vanishes in the radiation gauge and leaves just

82 uB vé pa
<a€2(9 9"’ R 3as)

1
> = <n“aghmamﬂa — D,h N OB — 277“577"585h“8[3ha,\>
e=0

The first two terms vanish after integration by parts and leave just

1
> = —577“[3771“S (05sh**9ghan )

)
)

82 uB v pa
@(9 9”°R Baa)

e=0

Now figure out what happens to the trace
) = (o (99 R )
= v 55 (9" 97" R gas
o 0e?

. 0 vé pa
- <29uv o2 (979" R pas)

82 uB v pa
<8e29“” (9"79"° R 3as)

1
= =500 (Osh*Ophan)

+2 <hl“, n”ﬂnyéRagag‘ O>
=
The first term vanishes after an integration by parts because of the wave equa-
tion. For the second term, the only part of R*g,s that is non-zero here is the
derivative term . ' )
Raﬁms = aal““m — 35Faﬁa

SO

2 <huv "0 R s

) = (0 i)
277“577”5 <8§ huyfaﬁa - 5ahwl.m‘55>

2 <aéhﬁéfaﬁa - 6ah‘351"°‘55>

= -2 <8ah56f‘a55>
where the gauge condition was used to eliminate a term. Now use
. 1
Fa55 = 5770‘0 (ashag + agh(sg - ajhg(s)

to obtain

2 <h;ul U“ﬁana,@aé

€:0> =~ (9ah" (Oshop + Oshso — Oshas))
= - <6ahﬁ535ha,8> - <6ah55aﬁha6> 1o <8ah5580h55>
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and notice that all of these terms vanish after integration by parts.
Now we can get the final result:
5—0>

S a—QRW{ + chag}
N 167k \ Oe2 Mo oh I

1 1
= (o) (g o ashan)

v 1 1% o
(Th) = 32Wﬂuﬁﬁ 0 (0sh**9zhan)

Insert the adapted frame plane wave expansion in the form

v 1 62 17
T = g (50" (s + ehas)

or

P (kw) = B (ko) = Re {am et )

1 il P i P
- <aulleLkpl +athve ikpx >
2

1

— 5 (duveiw(w‘?’—wo) + a*uye—iw(aya—wo))

or, for the non-zero components,
hi1 hia 1 1 0 iw(z®—20) « 1 0 —iw(2®—a0)
{ hot  has } 2 \™lo -1 ]° tarl g 1€

1 0 1 iw(gﬁ_ggo) * 0 1 —iw(w3—w0)
S B A

The polarization matrices are orthogonal and the non-zero stress-energy com-
ponents are the non-oscillating terms in the product, so we find just

1
(T%) = BT (00h“*dohanr)

- ﬁ ((—iw) (+iw) ayal + (—iw) (+iw) axa’;)

1 * *
= g (a+al +axal)

1
<Te0f?> = —327T]€ <60ha>\83h04)\>
1

= g (Ciw) (miw) s} + (—iw) (—iw) axa)

1

s (a+a% +axal)
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2.3.4 Example, with Dimensionless Units

It is convenient to use Planck units for which the constants ¢, G, h/27 are all
equal to one. All units are then dimensionless numbers. In particular, for the
currently accepted values of the constants,

Im = 103*"!Planck length units
1s = 10**?%8Planck time units
1W = 10752:569Planck power units

Now consider a plausible gravitational wave from an astrophysical source
with a strain amplitude of about 107!° and an angular frequency of 103rad/s

(@ 159.15Hz). In Planck units,

o

103

W =5.4x ].0_41

w=10%/s =

Now calculate the power flux. In Planck power units per square Planck area,

<Te0f:f3> = %aﬁaa* = % (5.4 « 10741)2 (10719)2
or
(TS) = 2.9 x 107!

Next, figure out what a Planck power unit is.

1w
1Planck power unit = To 52560 — 3.6 x 1072 W
Similarly,
1m
1Planck length = W
SO

2 1m2

_ ~70, 2
= {gsaTor x jgearer — 262x 107 m

1 (Planck length)

A Planck power unit per square Planck length turns out to be a very large unit
of flux, namely

1Plank flux unit = m =1.37x 10 E

The power flux in our example is therefore
<Teof?> = 2.9 x 107 ?'Plank flux units

= 29x107"" x 1.37 x 10" —;
m
- e

Several lessons can be drawn from this example. First, a very small fluctua-
tion in the geometry of spacetime — one part in 10'? — corresponds to a quite
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respectable power flux. If it were light, you could read by it. Second, one can
figure out the power radiated by the source of such a signal by multiplying the
flux by the area of a sphere.

W
Source Power = 4712 x 40—2
m

If we take 7 = 150,000 light years (the distance to the 1987a supernova), or
1.5 x 10% x 3 x 108 x 3.15 x 10" m = 1.42 x 10?! m then the source power works
out to

W%
Source Power = 47 (1.42 x 1021 m)2 X 40—2 =1.0x 10 W.
m

The peak power output of a typical supernova explosion is about 10** W so this
number is a bit high but in the right ballpark.

2.4 The Quadrupole Radiation Formula
2.4.1 Formal Solution

Now consider a source of gravitational radiation that produces a varying stress-
energy tensor. The resulting gravitational waves are found by solving the equa-
tion

—Oh* = 167kTH
Recall that this equation used the gauge conditions
oM =0

but not the additional conditions of the radiation gauge. The formal solution
of such a wave equation is just

(T

Tuv (.0 4\ _ Jet 3
hH (.’va)—ﬁl/ﬁdm/
where ) ‘
[TH] o (xo,xj ) = TH (xo — |z —a'|,2’)
and

o~ 2| = /3y (@i — ) (29— 27')

2.4.2 Small Source

A key assumption is that the source is small in comparison to the distance to
the field point, so that the function |2 — 2’| is nearly constant where T+ is not
zero and we can make the replacement

lv — 2’| = r =4/dixiad
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and obtain
4

R (20, a") = - /T“" (2" —r,2?") d’a’ = % [/ T“”d?’x]
ret

r

The key technical result we will need follows from the conservation law used
twice
0000 T = =00, T* = —0000T* = 0, 0T

which gives
009 [Tooxja:k] = [8m81gTem] Pl
= 0,00 [Témxja:k] — 20, [Téjxk + Tekxj] + 279k

When this expression is integrated over space, the total divergence terms become
surface integrals that are zero, leaving

0p0o /Toomjxkd?’x = Q/Tj’“d?’x
But the quadrupole moments of the source are
ij — /Tooﬂfj$kd3$
so the wave field far from the source is

Wt (a0, a) = 2% (a0~ 7)

2.4.3 Transverse Traceless Part

At a particular field point, 2? it is possible to remove the trace and the compo-
nents in the propagation direction of the waves by making a coordinate gauge
transformation. This procedure works because the coordinate variations £
obey the wave equation and can thus remove these components everywhere.
Removing the trace yields

hi* (mo,xi) = %fﬂ“ (mo — r)

7k = /TOO <3:jmk — ;5jkr2> Pz

Removing the component in the propagation direction simply projects the tensor
into the plane perpendicular to the radial direction.

where

. ) 2 . .
ik 0,3\ _ “pj k 7rs 0 _
h (m,x)—TP ~PY T (a: r)

where
P .= 51 _

r2

This expression gives the characteristic quadrupole radiation pattern.
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2.4.4 Gravitational Wave Luminosity

To find out how much power is being emitted, note that the power flux in these
units is just

! 1 9 o . 1 /e
P = —(TH)=— — ik —_pik - <hjkhjk'>
2 18 = 3z () (57)) =
L i ok s , -~ 1 g
= PJTPkS raP]mPkn mn _ 7PrmP3n rs imn
8mr2 I I Q12 1

1 x ™ 5™\ e
P—_- 6rm . 6rm _ rstimn
8mr2 < r2 ) < r2 ) I

Integrating this expression over the sphere at constant r yields the gravitational

wave “luminosity” of the source.
1oiogens 1 "™ "
L=-7"7m"— Orm — Orm — ds)
2 I 4 / ( r2 > ( r2 )

Now we have to do several integrals over the sphere. The resulting formula is

or

1 ceedkesik
L == J J
5[ 1

where repeated indexes are summed.

2.4.5 The Rotating Rod

Now consider a rod that is rotating in the x — y plane. The rod starts out
oriented along the z-axis in the interval

d
2

< < —
i
= 72

and has cross-sectional area a. Assume that d > /a so that the dominant
quadrupole moment in coordinates rotating with the rod is

vl

11 _ 2, _ 4P 3
Q —ap/_gac dx—12d

and we can set the other components to zero. When the rod rotates through
an angle 6, a coordinate rotation in the opposite direction will give us the non-
rotating coordinates.

¢ = xzcosf —ysinb

y = ycosf+ xsind

And the components of the tensor Q% transform in the usual way

Iy .
i ox* ox?

@ = 81:’"6’2( oxs
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’ ’
ozt 0zt

11’ 11 2
Q = BT Q e Q" cos“ 0
1’ 2/
Q7 = %QH% = Q" cosfsinf
oY 8562/ 6.’22/ .
Q2 2 — axl Qll 8x1 — Qll San 9

Because the trace term is not changing, there is no need to calculate it. The
term has no effect on the time derivatives, so

,_,,/k_/ ...j/k/
' =Q
and

#2122 | T 19" 43 | cos@sin 6 sin? 6

UV 1 _ap 3d3[ cos?0  cosfsind
i i

Assume a constant rotation rate so that

0=w
and )
6 =0.
is cos?f  cosfsind 3 ig cos?f  cosfsind
dt3 | cosfsinf sin? 6 v dg3 | cosfsind sin? 6
_ L 8 cos @ sin § —4cos? 0 + 4sin® 0
o —4cos® 6 + 4sin? 0 —8cosfsinf
48 2cosfsinf —cos? 6 +sin® 6
T %l cos?0+sin?0  —2cosfsind

4P sin20  —cos 20
—cos20 —sin20

The moments are then

l FUV g2 ] B a’od3w3{ sin20  —cos20 }

_I.,2/ 1/ .j.2’2’ 3 — cos 20 —sin 20

The luminosity of this object is then

117 re/ 2
1 11 19
L = 7TI' {,2/1/ _1,—_2/2/
5 I I
1a?p? ooy | sm20  —cos26 2
5 9 w —cos20 —sin20
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Note that

sin20  —cos20 17 a cos? 20 + sin® 20 0
—cos20 —sin20 o 0 cos? 20 + sin? 26
. 1
o 0

')

2
I = 7012 2d6w6
547
One way to express this result is to notice that the tip speed of the rotor is

just

so we finally get

so that
d5w’ = (20)° = 640°

and the mass per unit length of the rotor is
A=ap

and the luminosity takes the form

128 5 o 128 5 /)6
= B ()
A AN

Now do a bit of purely classical physics and work out the tension at the
center of the rod. A segment of length Az has mass Am = AAz and requires
an unbalanced force

AF = —Amw?z = —w? zAx

to keep it on its circular path. Integrate
dF = —w’\zdz

to obtain )
F(z)=Fy— §w2)\x2

The tension is zero at the ends of the rod, so

F(d/2)=0=F,— %wQ)\ (;)2

and the central tension is then
1
Fy= iw

The breaking strength S of a material is usually expressed as a force per unit
cross sectional area, so
F() = Sa
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and thus

1
Sa = =pav?
a= 5 pav
or
25 = pv?
25
v: ==
p

and the luminosity becomes

3
12
L= 128228
45 pc?
2.4.6 Playing with Rotating Rods

The simplest sort of rotating rod would be some type of fundamental string.
That would rotate with a tip speed equal to ¢ so that the luminosity of such a

thing would be

128 ,
L=="2)\
45

where A is the mass per unit length of the string, in Planck units. If such a
string started out with A\ of order 1 then this formula suggests that it would
radiate with a Planck luminosity near 1 or about 1052 W and would lose its
mass energy very quickly. Of course, the approximations that went into this
formula do not apply here but the basis result, that fundamental strings couple
very strongly to gravitational waves does appear to be valid.

For ordinary materials, the figure of merit is the dimensionless strength to
mass density ratio

g=2

pc

Steel S=07x%x10°Pa p="7800kg/m3 2.0x 10712
Kevlar 149 S =3.4x10°Pa p=1470kg/m3 5.1 x 10711
Nanotube S =63 x 10°Pa  p =2200kg/ m*® 6.4 x 10~1°

For a macroscopic rod, put in a length density near 100 kg/m®. The dimen-
sionless unit of length density is one Planck Mass (2.177 x 10~8kg) per Planck
length unit (1.616 x 10~3°m) or

2.177 x 1078 kg

kg
220X 2D K8 354 102758
1.616 x 1035 m T

Planck length density =

so we could assume
A=10"%

which would yield the luminosity

128 _

3
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Since the Planck power unit is 3.6 x 10°2 W the result is

L= 14%8 x 3.6 x 102 (8%)° W

L=1024(8%)" W

Putting in the values for different materials,

Lyca = 1024(20x1072)° W=8.2x 1073 W
Lieviar = 1024 (5.1x 10717 W = 1.36 x 1073 W
Luanotube = 1024 (6.4 x 10719)° W =27 x 10" W

2.4.7 Room at the Bottom

So far, we are supposing a huge rotor perhaps five or ten meters long. However
a set of smaller rotors, all rotating together would work somewhat better and
the analysis would be the same. For N rotors, each with mass m and length d

the luminosity would be
Lo 128 (Nm)® (29
- 45 d pc )

This formula assumes that all of the rotors are within a small fraction of a
wavelength of each other. In that case, the metric variations that they generate
simply add together. Assume that the rotors all have shapes characterized by

1
=—d?
“T

so that 1
m=adp = gdgp

and the total mass of the system is then

1
M= Nm = NgdSp

and

M

d3 - bN7p
M3 p\ /3

d = (b— =NV (M

<Np) ( p)
Nm M — NY/3pp2/3 (P>1/3
d b]\l /

(v4%)
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and the luminosity of the combination is

128 pN\2/3 [ 28\°
L = 7N2/3M4/3 L =~
45 (b) pc?

Dividing the total mass, M into N smaller rotors multiplies the luminosity
by N2/3 while dividing the length of each rotor by N'/3. If we take N = 1024
then the rotors would be of molecular scale and the formula would multiply the
luminosity by 10'6. If the rotors have properties similar to carbon nanotubes,
then a naive use of the formula would suggest a luminosity of about 107 W.

To do even better, note that most of the mass of a material is in its nuclei.
If those have quadrupole moments and can be persuaded to rotate together,
then the effective rotor length becomes smaller by a factor of 10*. That alone
multiplies the luminosity by another factor of 10® and gets us to about a tenth of
a watt. The strength to mass ratio of nuclei is also much higher than chemically
bound materials, so a nuclear rotor system would be capable of producing large
amounts of gravitational wave power.

There is a very big catch to this method of increasing the luminosity of
gravitational wave generators. The gravitational interaction is smaller than
the electromagnetic interaction by about 20 orders of magnitude. The energy
stored in a system of molecular scale rotors would couple to the electromagnetic
field much more easily than it does to gravity and the energy would dissipate
electromagnetically before any gravitational waves could be generated. The
collection of rotating nanotubes that we have been contemplating would actually
release all of its energy as a high energy pulse of infrared radiation that would
immediately be converted into heat. Since the energy stored in the contemplated
ton or so of spinning buckytubes would be more than is normally stored in
chemical explosives, the result would be impressive. The nuclear rotor system
would, of course, produce an even more impressive explosion.
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