
1 The Linearized Einstein Equations

1.1 The Assumption

1.1.1 Simplest Version

The simplest version of the linearized theory begins with �at Minkowski space-
time with basis vectors

@� =
@

@x�

and metric tensor components

��� =

8<: �1 for � = � = 0
0 for � 6= �
1 for � = � = 1; 2; 3

and assumes that the actual spacetime metric has the form

g�� = ��� + h��

where the h�� are all much less than 1. One then makes this substitution
everywhere in the theory and discards any terms that contain more than one
factor of h�� . For example, the exact expression for the metric compatible
connection coe¢ cients in the holonomic frame

���
 =
1

2
g�� (@
g�� + @�g
� � @�g�
)

becomes just

�lin
�
�
 =

1

2
��� (@
h�� + @�h
� � @�h�
)

and the exact expression for the curvature tensor components

R���� = @��
�
�� � @����� + �������� � ��������

loses the bothersome products of connection coe¢ cients and becomes just

Rlin
�
��� = @��lin

�
�� � @��lin���:

1.1.2 Fancier Versions

Instead of simply counting factors of h and throwing away terms with too many,
we can be more systematic and imagine a one-parameter family of metric tensors
g�� (") with

g�� (0) = ���

g�� (") = ��� + "h��

and then expand everything as a Taylor Series in the parameter ": That is just
the same as taking variational derivatives with

�g�� = h��
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and

�lin
�
�
 = ����


Rlin
�
��� = �R����

1.2 Coordinate or Gauge Variations

1.2.1 From Coordinate Transformations

Suppose that the coordinates are varied at the same time that the metric tensor
is varied. Thus, the coordinates become

x�
0
= x� + "��

g�0�0 =
@x�

@x�0
g��

@x�

@x�
0

Solve the coordinate relation and take the partial derivatives.

x� = x�
0
� "��

@x�

@x�0
= ��

0

�0 � "@�0�
�

@x�

@x�
0 = �

�0

�0 � "@�0��

Weird notation alert! Notice that the primes are attached to the components
and not to the indexes

g�0�0 =
�
��

0

�0 � "@�0�
�
�
g��

�
��

0

�0 � "@�0��
�

= ��
0

�0g���
�0

�0 � "@�0��g����
0

�0 � �
�0

�0g��"@�0�
� + o

�
"2
�

= g�� � "@���g�� � "g��@��� + o
�
"2
�

= g�� � "
�
@��� + @���

�
Finally, putting in the metric variation

g�� = ��� + "h��

as well, we get

g�0�0 = ��� + "h�� � "
�
@��� + @���

�
= ��� + "

�
h�� � @��� � @���

�
Thus, the metric variation

�g�� = h�� � @��� � @���

di¤ers from the variation
�g�� = h��
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by coordinate variations and therefore represents the same spacetime geometry.
A change of the form

h�� ! h�� � @��� � @���
is called a gauge transformation because it should have no e¤ect on the physics.
Note that this transformation is a special case of something we have seen

before: The Lie derivative of the metric tensor

$�g�� = ���;� � ��;�
which expresses the result of dragging the metric along the integrals curves of
the vector �eld �. For a general variation of the metric, a change of the form

�g�� ! �g�� +$�g��

is purely a coordinate or gauge transformation.

1.2.2 Gauge Conditions

It is useful to exploit the coordinate arbitrariness to simplify the metric varia-
tion. De�ne the trace reversal operation

�M�� =M�� �
1

2
(���M��) ���

and notice that it has the properties

��� �M�� = ����M��

and
�M�� =M��

Now consider the conditions
@��h�

� = 0.

If these conditions are not satis�ed by �h�� perform a coordinate transformation
to

�h
0

�� =
�h�� �

�
@��� + @��� � ���@���

�
or, with one index raised,

�h0�
� = �h�

� � ��

�
@
�� + @��
 � ��
@���

�
The conditions are then

@��h�
� � ��
@�

�
@
�� + @��
 � ��
@���

�
= 0

or

��
@�
�
@
�� + @��
 � ��
@���

�
= @��h�

�

��
@�@
�� + �
�
@�@��
 � ��
@���
@��� = @��h�

�

��
@�@
�� + �
�
@�@��
 � ���@�@��� = @��h�

�

��
@�@
�� + @�@��
� � ���@�@��� = @��h�

�

��
@�@
�� + @�@��
� � @�@��� = @��h�

�

��
@�@
�� = @��h�
�
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De�ne the d�Alembertian operator

� = ��
@�@


and get a set of wave equations for the coordinate �uctuations that are needed
to satisfy these conditions:

��� = @��h��

Thus, the conditions
@��h�

� = 0

can always be satis�ed by an appropriate choice of coordinate variations.
Notice that the coordinate variations �� that are needed to satisfy the con-

ditions are determined only up to variations that satisfy

��� = 0

Thus coordinate variations of this form preserve the gauge conditions.

1.3 Working Out the Linearized Curvature Components

1.3.1 The Full Riemann Tensor

Start with
Rlin

�
��� = @��lin

�
�� � @��lin���

or equivalently
�R���� = @���

�
�� � @� �����

where
����� = �lin

�
�� =

1

2
��� (@�h�� + @�h�� � @�h��)

and
����� =

1

2
��� (@�h�� + @�h�� � @�h��)

so that

�R���� =
1

2
��� (@� (@�h�� + @�h�� � @�h��)� @� (@�h�� + @�h�� � @�h��))

=
1

2
��� (@�@�h�� + @�@�h�� � @�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

=
1

2
��� (@�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

or
�R���� =

1

2
(@�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)
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1.3.2 Contracted Curvature Tensors

Now contract to form the variation of the Ricci tensor

�R�� = � (g��R����)

= (�g��)R���� + g
���R����

Since we are varying around �at Minkowski spacetime, the �rst term vanishes
and we get

�R�� = ���
1

2
(@�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

=
1

2
(@� (�

��@�h��)� ���@�@�h�� � @�@� (���h��) + @� (���@�h��))

Rearrange the terms.

2�R�� = @� (�
��@�h��) + @� (�

��@�h��)� @�@� (���h��)� ���@�@�h��

Rename the dummy indexes to make terms look alike.

2�R�� = @� (�
��@�h��) + @� (�

��@�h��)� @�@� (���h��)� ���@�@�h��

De�ne
h = ���h��

and
���@�@� = �

so the expression becomes

2�R�� = @� (�
��@�h��) + @� (�

��@�h��)� @�@�h��h��

Split the trace term into two terms.

2�R�� = @� (�
��@�h��)�

1

2
@�@�h+ @� (�

��@�h��)�
1

2
@�@�h��h��

and then notice that partial derivatives are common between adjacent terms so
that

2�R�� = @�

�
���@�h�� �

1

2
@�h

�
+ @

�

�
���@�h�� �

1

2
@�h

�
��h��

Now notice that

@��h�
� = @�

�
h�

� � 1
2
h���

�
= ���@�h�� �

1

2
@�h

and

@��h�
� = @�

�
h�

� � 1
2
h���

�
= ���@�h�� �

1

2
@�h
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so that the variation of the Ricci tensor becomes

2�R�� = @�@��h�
� + @

�
@��h�

� ��h��
If we choose the gauge conditions

@��h�
� = 0

then the result for the Ricci tensor variation is just

�R�� = �
1

2
�h��

Since the Einstein tensor is just the trace reversed Ricci tensor

G�� = �R��

we can get the variation of the Einstein tensor with no more work:

�G�� = �
1

2
��h��

1.4 Linearized Einstein Equations

The linearized version of the Einstein equations

G�� = 8�kT��

is just
�G�� = 8�kT��

or
���h�� = 16�kT��

in the gauge speci�ed by
@��h

�� = 0:

Written out, the linearized equations are

� @
2

@t2
�h�� +

@2

@x2
�h�� +

@2

@y2
�h�� +

@2

@z2
�h�� = 16�kT�� (t; x; y; z)

so it is very clear that we have a wave equation for each of the components.

2 Waves

2.1 Plane Wave Expansions

2.1.1 Transverse Waves

So long as these are waves in a �at background spacetime, it makes sense to
expand them in plane waves. A single plane wave would be

�h�� (k; x) = Re
n
�a��eik�x

�
o
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where the �a�� are complex coe¢ cients that contain the phase information as
well as the amplitude information. For such a wave, the gauge condition is

@��h
�� = Re

n
i�a��k�e

ik�x
�
o
= 0

so that we need the "transverse wave" condition

�a��k� = 0

and the d�Alembertian operator yields

��h�� (k; x) = ����k�k��h�� (k; x)
= � (k � k) �h�� (k; x) :

2.1.2 Remaining Coordinate Freedom

Where there is no stress-energy, the linearized system is solved by a single plane
wave with

k � k = 0

Some coordinate variations are still allowed.

�h�� ! �h�� � @��� � @��� + ���@���

so long as
��� = 0

These variations preserve both the wave equation and the gauge condition. For
a single plane wave, take

�� = Re
n
`�e

ik�x
�
o

with
k � k = 0

so that
�a�� ! �a�� � ik�`� � ik�`� + i���k�`�

The gauge condition is preserved since

�a��k� ! �a��k� � ik�`�k� � ik�k�`� + i���k�k�`�

= �ik�`�k� + i���k�k�`�

= �ik�`�k� + ik�`�k� = 0

2.1.3 Radiation Gauge

One way to �x the remaining freedom is to require

�a�0 = 0
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Although it looks as if there are four conditions here, remember that we already
have one linear combination satis�ed, namely

k��a
�0 = 0

To see what happens in detail, switch to a set of basis vectors that are aligned
with the wave so that @3 is in the propagation direction. In that case

k1 = k2 = 0

and
k3 = �k0

The transverse wave condition then reduces to

�a�3 = �a3� = 0

so that the new conditions are just these three.

�a00 = 0

�a10 = 0

�a20 = 0

After the new coordinate variation makes the replacement

�a�� ! �a�� � ik�`� � ik�`� + i���k�`�

these conditions become

�a00 � ik0`0 � ik0`0 + i�00k�`� = 0

�a10 � ik0`1 = 0

�a20 � ik0`2 = 0

The last two can only be solved for `1 and `2

`1 = �i�a10=k0; `2 = �i�a20=k0

The �rst condition becomes

�a00 � 2ik0`0 � ik0`0 � ik3`3 = 0

or
�a00 + ik0`

0 � ik3`3 = 0

or
�a00 + i

�
k0`

0 � k3`3
�
= 0

which can be solved for just

k0`
0 � k3`3 = i�a00
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There is still one combination of coe¢ cients un�xed, so we can impose one
more condition.

�a11 + �a22 + �a33 = 0

which, after the replacement

�a�� ! �a�� � ik�`� � ik�`� + i���k�`�

becomes
�a11 + �a22 + �a33 � 2ik3`3 � 3i

�
k0`

0 + k3`
3
�
= 0

But
k0`

0 = k3`
3 + i�a00

so the resulting condition is

�a11 + �a22 + �a33 + 3�a00 � 8ik3`3 = 0

and can be solved for the last coordinate parameter:

`3 = � i
8

�
�a11 + �a22 + �a33 + 3�a00

�
2.1.4 Summary of Radiation Gauge

In terms of the original metric �uctuation �eld, the radiation gauge imposes the
conditions

@��h
�� = 0

�h0� = 0

and
�h = 0

Because all of the time components are set to zero, the conditions can be stated
in terms of just the space components

@a�h
ab = 0; �h11 + �h22 + �h33 = 0

The �rst condition states that the spatial metric �uctuation is transverse to
the direction of propagation while the second says that it is trace-free. In a
coordinate system aligned with the wave so that @3 is the propagation direction,
the non-zero components of the metric �uctuation form a two-by-two symmetric
trace-free matrix�

�h11 �h12
�h21 �h22

�
= h+

�
1 0
0 �1

�
+ h�

�
0 1
1 0

�
We are left with just two dynamical degrees of freedom or polarizations.
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2.2 E¤ects on Matter

2.2.1 Geodesic Deviation Equation

Recall the relative acceleration of freely falling particles in the form

a = K (n)

where K is a second rank tensor called the tidal force tensor given in terms of
the curvature tensor

K (n) = R (u; n)u

In a local Lorentz frame that is set up around one freely falling particle, the
relative acceleration of a neighbor at position

n = xi@i

is then
d2xi

dt2
= Ri00jx

j

where t is the time in the local Lorentz frame and xj are the space coordinates
of the neighboring particle in that frame.
Recall the linearized curvature components

�R���� =
1

2
(@�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

so that the curvature in the wave becomes

Ri00j = Ri00j

=
1

2

�
@0@0hji � @0@ih0j � @j@0h0i + @j@ih00

�
In the radiation gauge, we just get one surviving term

Ri00j =
1

2

@2

@t2
hji

so
d2xi

dt2
=
1

2
xj
�
@2

@t2
hji

�
This equation can be integrated with respect to time. If the neighboring particle
is at rest at position xi (0) at the instant that the gravitational wave hits, then
its subsequent position will be

xi (t) = xi (0) +
1

2
xj (0)hji

In a coordinate system adapted to the wave, with x3 = z the propagation
direction and x1 = x and x2 = y the transverse directions, the particle position
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will then be

z (t) = z (0)

x (t) = x (0) +
1

2
(x (0)h11 + y (0)h21)

y (t) = y (0) +
1

2
(x (0)h12 + y (0)h22)

Notice that all of the particle motion is perpendicular to the direction of
wave propagation, so this really is a transverse wave.

2.2.2 Interparticle Distances and Strain

So far, we just have a description of relative particle motion in terms of local
Lorentz coordinates. What does that mean for actual distances? Consider a
wave with h21 = 0 hitting a particle that is on the x�axis of the reference
particle in this adapted coordinate system. The distance between the particle
and the reference is

d (t) = x (t)
p
g11

= x (t)

�
1 +

1

2
h11

�
=

�
x (0) +

1

2
x (0)h11

��
1 +

1

2
h11

�
= x (0) (1 + h11) + o

�
h2
�

Notice that there are two separate e¤ects. The distance changes because the
metric tensor changes the amount of distance that is associated with each co-
ordinate interval. The distance also changes because the coordinate position of
the particle changes. Both e¤ects are in the same direction and of equal size.
This calculation is a really good example of how important a plus or minus sign
can be. Had the sign turned out the other way, there would be no physical e¤ect
at all.
In general, the metric �uctuation hij becomes the actual strain (�LL ) that is

imposed on objects in the path of the wave. For most instruments, that strain is
the quantity that is actually measured and is usually the quantity that is quoted
when predicting the strength of a possible gravitational wave. For example, the
1987a supernova in the Large Magellanic Cloud, should have sent out gravita-
tional waves that reached Earth with hij on the order of 10�19. A Michelson
Interferometer with arms 5,000 meters long that functions in the normal way
would be able to detect length changes of about 1% of a wavelength of light.
For light with a wavelength of 500 nm, the detectable strain would then be
500� 10�9m divided by 5000m or just 10�10. Clearly, a useful Laser Interfero-
metric Gravitational Wave Observatory (such as LIGO) needs to function in a
far more sophisticated way than a normal Michelson Interferometer.
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2.3 Stress-Energy of a Gravitational Wave

2.3.1 Going to Second Order

Consider a one-parameter family of spacetime metrics g�� (") with

g�� (0) = ���

and
@g��
@"

����
"=0

= h��

where h�� is a gravitational wave that solves the linearized Einstein Equations
in the radiation gauge.

@

@"
G�� fg�� (")g

����
"=0

= G��lin fh��g = 0

Here, the curly brackets indicate a functional dependence that may include
derivatives and integrals of the argument.
Now re�ne the solution by adding the next term to the series expansion of

the metric.
g�� (") = ��� + "h�� + "

2h(2)��

and attempt to solve the next order Einstein Equation

@2

@"2
G�� fg�� (")g

����
"=0

= 0

for the correction h(2)�� . Notice that we want h
(2)
�� to be the correction to the

metric for " = 1 rather than a second derivative of g�� (") with respect to ".
Now rearrange the higher order Einstein Equation.

@2

@"2
G�� fg�� (")g

����
"=0

= 2
@

@s
G��

n
��� + sh

(2)
��

o����
s=0

+
@2

@"2
G��

�
��� + "h��

	����
"=0

= 2G��lin

n
h
(2)
��

o
+
@2

@"2
G��

�
��� + "h��

	����
"=0

so we need to solve

2G��lin

n
h
(2)
��

o
+
@2

@"2
G��

�
��� + "h��

	����
"=0

= 0

Move the second partial derivative term to the right side of the equation

G��lin

n
h
(2)
��

o
= � 1

2

@2

@"2
G��

�
��� + "h��

	����
"=0

Now we have a linearized Einstein Equation

G��lin

n
h
(2)
��

o
= 8�kT��e¤
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with an e¤ective stress energy tensor

T��e¤ = �
1

16�k

@2

@"2
G��

�
��� + "h��

	����
"=0

due to the gravitational wave.

2.3.2 Calculating Second Order Curvature Components

Now recall that the Riemann tensor is given by

R��
� = @
�
�
�� � @����
 + ���
���� � �������


with
���
 =

1

2
g�� (@
g�� + @�g
� � @�g�
)

Here we will take the metric components to be

g�� = ��� + "h��

and wish to evaluate
@2

@"2
G��

�
��� + "h��

	����
"=0

Start with just the Ricci tensor

@2

@"2
R��

�
��� + "h��

	����
"=0

=
@2

@"2
g��g��R����

����
"=0

For convenience, use dots to denote derivatives with respect to the pertur-
bation parameter ".

_g�� =
@g��
@"

= h��

_g�� = �g�� _g��g�� = �h��

�g�� = � _g�� _g��g�� � g�� _g�� _g��

= h��h�
� + h��h

��

= 2h��h
��

_���
 =
1

2
_g�� (@
g�� + @�g
� � @�g�
) +

1

2
g�� (@
h�� + @�h
� � @�h�
)

����
 =
1

2
�g�� (@
g�� + @�g
� � @�g�
) +

1

2
_g�� (@
h�� + @�h
� � @�h�
) +

1

2
_g�� (@
h�� + @�h
� � @�h�
)

= h��h
�� (@
g�� + @�g
� � @�g�
)� h�� (@
h�� + @�h
� � @�h�
)

����


���
"=0

= �h�� (@
h�� + @�h
� � @�h�
)
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_R���� = @� _�
�
�� � @� _���� + _�����

�
�� + �

�
��
_���� � _�����

�
�� � ���� _����

�R���� = @���
�
�� � @� �����

+������
�
�� + _���� _�

�
�� + _���� _�

�
�� + �

�
��
�����

���������� � _���� _�
�
�� � _���� _�

�
�� � ���������

= @���
�
�� � @� ����� + ��������� + ��������� � ��������� � ���������

+2 _���� _�
�
�� � 2 _���� _����

@

@"

�
g��g��R����

�
= _g��g��R���� + g

�� _g��R���� + g
��g�� _R����

Now take another derivative, but discard any term that will give zero for " = 0.

@2

@"2
�
g��g��R����

�����
"=0

= _g��g�� _R���� + g
�� _g�� _R����

+_g��g�� _R���� + g
�� _g�� _R���� + g

��g�� �R����

=
n
2
�
h��g�� + g��h��

�
_R���� + g

��g�� �R����

o���
"=0

Since the connection coe¢ cients vanish for " = 0 there are some simpli�cations

_R����

���
"=0

= @� _�
�
�� � @� _����

�R����

���
"=0

= @���
�
�� � @� ����� + 2 _���� _���� � 2 _���� _����

@2

@"2
�
g��g��R����

�����
"=0

= 2
�
h��g�� + g��h��

� �
@� _�

�
�� � @� _����

�
+g��g��

�
@���

�
�� � @� ����� + 2 _���� _���� � 2 _���� _����

�
For " = 0

_���� =
1

2
��� (@�h�� + @�h�� � @�h��)

_���� =
1

2
��� (@�h�� + @�h�� � @�h��)

For waves in the radiation gauge, all of the terms in the second expression are
zero, so

_���� = 0

@� _�
�
�� � @� _���� =

1

2
��� (@�@�h�� + @�@�h�� � @�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

=
1

2
��� (@�@�h�� � @�@�h�� � @�@�h�� + @�@�h��)

=
1

2
(@�@�h�

� ��h�� � @�@�h+ @�@�h��)

=
1

2
(@� (@�h�

�) + @
�
(@�h�

�)� @
�
@�h��h��)
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For waves in the radiation gauge, all of these terms are zero, so

@� _�
�
�� � @� _���� = 0

@���
�
�� � @� ����� = �@� (h�� (@�h�� + @�h�� � @�h��)) + @� (h�� (@�h�� + @�h�� � @�h��))

= � (@�h��) (@�h�� + @�h�� � @�h��)� h�� (@�@�h�� + @�@�h�� � @�@�h��)
= � (@�h��) (@�h��)� (@�h��) (@�h��) + (@�h��) (@�h��)

�h�� (@�@�h�� + @�@�h�� � @�@�h��)

or, using the gauge conditions,

@���
�
�� � @� ����� = �h�� (@�@�h�� + @�@�h�� � @�@�h��)

Now assemble what we have so far:

@2

@"2
�
g��g��R����

�����
"=0

= g��g��
�
@���

�
�� � @� ����� + 2 _���� _���� � 2 _���� _����

�
= g��g��

�
@���

�
�� � @� �����

�
+2g��g�� _���� _�

�
�� � 2g��g�� _���� _����

= g��g�� [�h�� (@�@�h�� + @�@�h�� � @�@�h��)]
+2g��g�� _���� _�

�
�� � 2g��g�� _���� _����

Notice that the contracted connection coe¢ cient is zero for radiation gauge
waves so that

@2

@"2
�
g��g��R����

�����
"=0

= g��g��
h
�h�� (@�@�h�� + @�@�h�� � @�@�h��)� 2 _���� _����

i
or

@2

@"2
�
g��g��R����

�����
"=0

= ����h��@�@�h�� � ���h��@�@�h�� � h��@�@�h��

�2������ _���� _����

That leaves the product of connection coe�cient variations to work out.

_���� =
1

2
��� (@�h�� + @�h�� � @�h��)

_���� =
1

2
��� (@�h�� + @�h�� � @�h��)

2 _���� _�
�
�� =

1

2
������ (@�h�� + @�h�� � @�h��) (@�h�� + @�h�� � @�h��)

4 _���� _�
�
�� = ������@�h��@�h�� + �

�����@�h��@�h�� � ������@�h��@�h��
+������@�h��@�h�� + �

�����@�h��@�h�� � ������@�h��@�h��
�������@�h��@�h�� � ������@�h��@�h�� + ������@�h��@�h��
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Reduce the number of indexes by using the metric to raise indexes wherever
possible.

4 _���� _�
�
�� = @�h

��@�h�� + @�h
��@�h�� � @�h��@�h��

+@�h�
�@�h

�
� + @�h�

�@�h�
� � ���@�h��@�h��

����@�h��@�h�� � @�h��@�h�� + @�h��@�h��

Match up like terms.

4 _���� _�
�
�� = @�h

��@�h�� � @�h��@�h�� � ���@�h��@�h�� � ���@�h��@�h��
+@�h

��@�h�� � @�h��@�h�� + @�h��@�h��

+@�h�
�@�h

�
� + @�h

�
�@�h

�
�

= �2���@�h��@�h�� + @�h��@�h�� + 2@�h��@�h��

�2������ _���� _���� = ���������@�h�
�@�h�� � ������@�h��@�h�� �

1

2
������@�h

��@�h��

= ���@�h
��@�h

�
� � @�h��@�h�� �

1

2
������@�h

��@�h��

so that

@2

@"2
�
g��g��R����

�����
"=0

= ����h��@�@�h�� � ���h��@�@�h�� � h��@�@�h��

+���@�h
��@�h

�
� � @�h��@�h�� �

1

2
������@�h

��@�h��

2.3.3 The Short Wavelength Approximation

If we solve the second order system in detail, we will gain some useless infor-
mation at great cost along with the information that we really need. We will
obtain the nonlinear corrections to the rapidly �uctuationg gravitational wave
amplitudes. Since these amplitudes are typically around 10�19 the nonlinear
corrections to them are of no interest at all. To get rid of this useless informa-
tion, perform a space-time average over a region that is long in comparison to
the period of the waves and larger in comparison to their wavelength and solve
the corresponding time averaged second order equations:

G��lin

nD
h
(2)
��

Eo
= hT��e¤ i

The time-averaged e¤ective stress energy tensor is actually what we are inter-
ested in. It provides the average rate at which the gravitational wave transfers
energy and momentum.
The key idea for simplifying the e¤ective stress energy is that any derivative

of a rapidly varying function f will average to zero, so

h@�fi ! 0
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As a result, we can "integrate by parts" to obtain

����h��@�@�h�� � ���h��@�@�h�� � h��@�@�h��

�
= ���@�h

��@�h
�
� + �

��@�h
��@�h

�
� + @�h

��@�h
��

which vanishes in the radiation gauge and leaves just�
@2

@"2
�
g��g��R����

�����
"=0

�
=

�
���@�h

��@�h
�
� � @�h��@�h�� �

1

2
������@�h

��@�h��

�
The �rst two terms vanish after integration by parts and leave just�

@2

@"2
�
g��g��R����

�����
"=0

�
= �1

2
������



@�h

��@�h��
�

Now �gure out what happens to the trace�
@2

@"2
g��

�
g��g��R����

�����
"=0

�
=

�
g��

@2

@"2
�
g��g��R����

�����
"=0

�
+

�
2 _g��

@

@"

�
g��g��R����

�����
"=0

�
= �1

2
����

�����


@�h

��@�h��
�

+2
D
h�� �

����� _R����

���
"=0

E
The �rst term vanishes after an integration by parts because of the wave equa-
tion. For the second term, the only part of _R���� that is non-zero here is the
derivative term

_R���� = @� _�
�
�� � @� _����

so

2
D
h�� �

����� _R����

���
"=0

E
= 2������

D
h��

�
@� _�

�
�� � @� _����

�E
= 2������

D
@
�
h�� _�

�
�� � @�h�� _����

E
= 2

D
@
�
h�� _���� � @�h�� _����

E
= �2

D
@�h

�� _����

E
where the gauge condition was used to eliminate a term. Now use

_���� =
1

2
��� (@�h�� + @�h�� � @�h��)

to obtain

2
D
h�� �

����� _R����

���
"=0

E
= ����



@�h

�� (@�h�� + @�h�� � @�h��)
�

= �


@�h

��@�h
�
�

�
�


@�h

��@�h
�
�

�
+ ���



@�h

��@�h��
�

17



and notice that all of these terms vanish after integration by parts.
Now we can get the �nal result:

hT��e¤ i = � 1

16�k

�
@2

@"2
G��

�
��� + "h��

	����
"=0

�
= � 1

16�k

�
@2

@"2
R��

�
��� + "h��

	����
"=0

�
=

�
� 1

16�k

��
�1
2
������



@�h

��@�h��
��

or
hT��e¤ i =

1

32�k
������



@�h

��@�h��
�

Insert the adapted frame plane wave expansion in the form

h�� (k; x) = �h�� (k; x) = Re
n
�a��eik�x

�
o

=
1

2

�
�a��eik�x

�

+ �a���e�ik�x
�
�

=
1

2

�
�a��ei!(x

3�x0) + �a���e�i!(x
3�x0)

�
or, for the non-zero components,�
h11 h12
h21 h22

�
=

1

2

�
a+

�
1 0
0 �1

�
ei!(x

3�x0) + a�+

�
1 0
0 �1

�
e�i!(x

3�x0)
�

+
1

2

�
a�

�
0 1
1 0

�
ei!(x

3�x0) + a��

�
0 1
1 0

�
e�i!(x

3�x0)
�

The polarization matrices are orthogonal and the non-zero stress-energy com-
ponents are the non-oscillating terms in the product, so we �nd just


T 00e¤
�
=

1

32�k



@0h

��@0h��
�

=
1

32�k

�
(�i!) (+i!) a+a�+ + (�i!) (+i!) a�a��

�
=

1

32�k
!2
�
a+a

�
+ + a�a

�
�
�



T 03e¤

�
= � 1

32�k



@0h

��@3h��
�

= � 1

32�k

�
(�i!) (�i!) a+a�+ + (�i!) (�i!) a�a��

�
=

1

32�k
!2
�
a+a

�
+ + a�a

�
�
�
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2.3.4 Example, with Dimensionless Units

It is convenient to use Planck units for which the constants c;G; h=2� are all
equal to one. All units are then dimensionless numbers. In particular, for the
currently accepted values of the constants,

1m = 1034:791Planck length units
1 s = 1043:268Planck time units
1W = 10�52:560Planck power units

Now consider a plausible gravitational wave from an astrophysical source
with a strain amplitude of about 10�19 and an angular frequency of 103 rad= s
( 10

3

2� = 159: 15Hz). In Planck units,

! = 103= s =
103

1043:268
= 5:4� 10�41

Now calculate the power �ux. In Planck power units per square Planck area,

T 03e¤

�
=

1

32�
!2aa� =

1

32�

�
5:4� 10�41

�2 �
10�19

�2
or 


T 03e¤
�
= 2:9� 10�121

Next, �gure out what a Planck power unit is.

1Planck power unit =
1W

10�52:560
= 3:6� 1052W

Similarly,

1Planck length =
1m

1034:791

so

1 (Planck length)2 =
1m2

1034:791 � 1034:791 = 2:62� 10
�70m2

A Planck power unit per square Planck length turns out to be a very large unit
of �ux, namely

1Plank �ux unit =
3:6� 1052W
2:62� 10�70m2 = 1:37� 10

122 W

m2

The power �ux in our example is therefore

T 03e¤

�
= 2:9� 10�121Plank �ux units

= 2:9� 10�121 � 1:37� 10122 W
m2

= 40
W

m2

Several lessons can be drawn from this example. First, a very small �uctua-
tion in the geometry of spacetime � one part in 1019 � corresponds to a quite

19



respectable power �ux. If it were light, you could read by it. Second, one can
�gure out the power radiated by the source of such a signal by multiplying the
�ux by the area of a sphere.

Source Power = 4�r2 � 40 W
m2

If we take r = 150; 000 light years (the distance to the 1987a supernova), or
1:5� 105 � 3� 108 � 3:15� 107m = 1:42� 1021m then the source power works
out to

Source Power = 4�
�
1:42� 1021m

�2 � 40 W
m2

= 1:0� 1045W.

The peak power output of a typical supernova explosion is about 1044W so this
number is a bit high but in the right ballpark.

2.4 The Quadrupole Radiation Formula

2.4.1 Formal Solution

Now consider a source of gravitational radiation that produces a varying stress-
energy tensor. The resulting gravitational waves are found by solving the equa-
tion

���h�� = 16�kT��

Recall that this equation used the gauge conditions

@��h
�� = 0

but not the additional conditions of the radiation gauge. The formal solution
of such a wave equation is just

�h��
�
x0; xi

�
= 4

Z
[T�� ]ret
jx� x0j d

3x0

where
[T�� ]ret

�
x0; xj

0
�
= T��

�
x0 � jx� x0j ; xj0

�
and

jx� x0j =
q
�ij (xi � xi0) (xj � xj0)

2.4.2 Small Source

A key assumption is that the source is small in comparison to the distance to
the �eld point, so that the function jx� x0j is nearly constant where T�� is not
zero and we can make the replacement

jx� x0j ! r =
q
�ijxixj
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and obtain

�h��
�
x0; xi

�
=
4

r

Z
T��

�
x0 � r; xj0

�
d3x0 =

4

r

�Z
T��d3x

�
ret

The key technical result we will need follows from the conservation law used
twice

@0@0T
00 = �@0@`T 0` = �@`@0T `0 = @m@`T `m

which gives

@0@0
�
T 00xjxk

�
=

�
@m@`T

`m
�
xjxk

= @m@`
�
T `mxjxk

�
� 2@`

�
T `jxk + T `kxj

�
+ 2T jk

When this expression is integrated over space, the total divergence terms become
surface integrals that are zero, leaving

@0@0

Z
T 00xjxkd3x = 2

Z
T jkd3x

But the quadrupole moments of the source are

Qjk =

Z
T 00xjxkd3x

so the wave �eld far from the source is

�hjk
�
x0; xi

�
=
2

r
�Qjk

�
x0 � r

�
2.4.3 Transverse Traceless Part

At a particular �eld point, xi it is possible to remove the trace and the compo-
nents in the propagation direction of the waves by making a coordinate gauge
transformation. This procedure works because the coordinate variations ��

obey the wave equation and can thus remove these components everywhere.
Removing the trace yields

hjk
�
x0; xi

�
=
2

r
�Ijk
�
x0 � r

�
where

Ijk =

Z
T 00

�
xjxk � 1

3
�jkr2

�
d3x

Removing the component in the propagation direction simply projects the tensor
into the plane perpendicular to the radial direction.

hjk
�
x0; xi

�
=
2

r
P jrP

k
s
�Irs
�
x0 � r

�
where

P jr = �
j
r �

xjxr

r2

This expression gives the characteristic quadrupole radiation pattern.
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2.4.4 Gravitational Wave Luminosity

To �nd out how much power is being emitted, note that the power �ux in these
units is just

P =
1

32�



T 03e¤

�
=

1

32�

��
@

@x0
hjk
��

@

@r
hjk
��

=
1

32�

D
_hjk _hjk

E
=

1

8�r2
P jrP

k
s

...
I
rs
P jmP

k
n

...
I
mn

=
1

8�r2
PrmPsn

...
I
rs ...
I
mn

or

P =
1

8�r2

�
�rm �

xrxm

r2

��
�rm �

xsxn

r2

�
...
I
rs ...
I
mn

Integrating this expression over the sphere at constant r yields the gravitational
wave �luminosity�of the source.

L =
1

2

...
I
rs ...
I
mn 1

4�

Z �
�rm �

xrxm

r2

��
�rm �

xsxn

r2

�
d


Now we have to do several integrals over the sphere. The resulting formula is

L =
1

5

...
I
jk ...
I
jk

where repeated indexes are summed.

2.4.5 The Rotating Rod

Now consider a rod that is rotating in the x � y plane. The rod starts out
oriented along the x-axis in the interval

�d
2
� x � d

2

and has cross-sectional area a. Assume that d �
p
a so that the dominant

quadrupole moment in coordinates rotating with the rod is

Q11 = a�

Z d
2

� d
2

x2dx =
a�

12
d3

and we can set the other components to zero. When the rod rotates through
an angle �, a coordinate rotation in the opposite direction will give us the non-
rotating coordinates.

x0 = x cos � � y sin �
y0 = y cos � + x sin �

And the components of the tensor Qij transform in the usual way

Qi
0j0 =

@xi
0

@xr
Qrs

@xj
0

@xs
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Q1
010 =

@x1
0

@x1
Q11

@x1
0

@x1
= Q11 cos2 �

Q1
020 =

@x1
0

@x1
Q11

@x2
0

@x1
= Q11 cos � sin �

Q2
020 =

@x2
0

@x1
Q11

@x2
0

@x1
= Q11 sin2 �

Because the trace term is not changing, there is no need to calculate it. The
term has no e¤ect on the time derivatives, so

...
I
j0k0

=
...
Q
j0k0

and " ...
I
1010 ...

I
1020

...
I
2010 ...

I
2020

#
=
a�

12
d3
d3

dt3

�
cos2 � cos � sin �

cos � sin � sin2 �

�
Assume a constant rotation rate so that

_� = !

and
�� = 0:

d3

dt3

�
cos2 � cos � sin �

cos � sin � sin2 �

�
= !3

d3

d�3

�
cos2 � cos � sin �

cos � sin � sin2 �

�
= !3

�
8 cos � sin � �4 cos2 � + 4 sin2 �

�4 cos2 � + 4 sin2 � �8 cos � sin �

�
= 4!3

�
2 cos � sin � � cos2 � + sin2 �

� cos2 � + sin2 � �2 cos � sin �

�
= 4!3

�
sin 2� � cos 2�
� cos 2� � sin 2�

�
The moments are then" ...

I
1010 ...

I
1020

...
I
2010 ...

I
2020

#
=
a�

3
d3!3

�
sin 2� � cos 2�
� cos 2� � sin 2�

�
The luminosity of this object is then

L =
1

5
Tr

" ...
I
1010 ...

I
1020

...
I
2010 ...

I
2020

#2

=
1

5

a2�2

9
d6!6Tr

�
sin 2� � cos 2�
� cos 2� � sin 2�

�2
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Note that�
sin 2� � cos 2�
� cos 2� � sin 2�

�2
=

�
cos2 2� + sin2 2� 0

0 cos2 2� + sin2 2�

�
=

�
1 0
0 1

�
so we �nally get

L =
2

45
a2�2d6!6

One way to express this result is to notice that the tip speed of the rotor is
just

v =
d

2
!

so that
d6!6 = (2v)

6
= 64v6

and the mass per unit length of the rotor is

� = a�

and the luminosity takes the form

L =
128

45
�2v6 =

128

45
�2
�v
c

�6
Now do a bit of purely classical physics and work out the tension at the

center of the rod. A segment of length �x has mass �m = ��x and requires
an unbalanced force

�F = ��m!2x = �!2�x�x
to keep it on its circular path. Integrate

dF = �!2�xdx

to obtain
F (x) = F0 �

1

2
!2�x2

The tension is zero at the ends of the rod, so

F (d=2) = 0 = F0 �
1

2
!2�

�
d

2

�2
and the central tension is then

F0 =
1

2
�v2

The breaking strength S of a material is usually expressed as a force per unit
cross sectional area, so

F0 = Sa
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and thus
Sa =

1

2
�av2

or
2S = �v2

v2 =
2S

�

and the luminosity becomes

L =
128

45
�2
�
2S

�c2

�3
2.4.6 Playing with Rotating Rods

The simplest sort of rotating rod would be some type of fundamental string.
That would rotate with a tip speed equal to c so that the luminosity of such a
thing would be

L =
128

45
�2

where � is the mass per unit length of the string, in Planck units. If such a
string started out with � of order 1 then this formula suggests that it would
radiate with a Planck luminosity near 1 or about 1052W and would lose its
mass energy very quickly. Of course, the approximations that went into this
formula do not apply here but the basis result, that fundamental strings couple
very strongly to gravitational waves does appear to be valid.
For ordinary materials, the �gure of merit is the dimensionless strength to

mass density ratio

�2 =
2S

�c2

Steel S = 0:7� 109 Pa � = 7800 kg=m3 2:0� 10�12
Kevlar 149 S = 3:4� 109 Pa � = 1470 kg=m3 5:1� 10�11
Nanotube S = 63� 109 Pa � = 2200 kg=m3 6:4� 10�10

For a macroscopic rod, put in a length density near 100 kg/m3. The dimen-
sionless unit of length density is one Planck Mass (2:177� 10�8kg) per Planck
length unit (1:616� 10�35m) or

Planck length density =
2:177� 10�8
1:616� 10�35

kg
m
= 1:35� 1027 kg

m

so we could assume
� = 10�25

which would yield the luminosity

L =
128

45
� 10�50

�
�2
�3
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Since the Planck power unit is 3:6� 1052W the result is

L =
128

45
� 3:6� 102

�
�2
�3
W

L = 1024
�
�2
�3
W

Putting in the values for di¤erent materials,

Lsteel = 1024
�
2:0� 10�12

�3
W = 8: 2� 10�33W

Lkevlar = 1024
�
5:1� 10�11

�3
W = 1:36� 10�28W

Lnanotube = 1024
�
6:4� 10�10

�3
W = 2:7� 10�25W

2.4.7 Room at the Bottom

So far, we are supposing a huge rotor perhaps �ve or ten meters long. However
a set of smaller rotors, all rotating together would work somewhat better and
the analysis would be the same. For N rotors, each with mass m and length d
the luminosity would be

L =
128

45

�
Nm

d

�2�
2S

�c2

�3
:

This formula assumes that all of the rotors are within a small fraction of a
wavelength of each other. In that case, the metric variations that they generate
simply add together. Assume that the rotors all have shapes characterized by

a =
1

b
d2

so that
m = ad� =

1

b
d3�

and the total mass of the system is then

M = Nm = N
1

b
d3�

and

d3 = b
M

N�

d =

�
b
M

N�

�1=3
= N�1=3

�
M
b

�

�1=3
Nm

d
=

M�
b MN�

�1=3 = N1=3M2=3
��
b

�1=3
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and the luminosity of the combination is

L =
128

45
N2=3M4=3

��
b

�2=3� 2S
�c2

�3
Dividing the total mass, M into N smaller rotors multiplies the luminosity

by N2=3 while dividing the length of each rotor by N1=3. If we take N = 1024

then the rotors would be of molecular scale and the formula would multiply the
luminosity by 1016. If the rotors have properties similar to carbon nanotubes,
then a naive use of the formula would suggest a luminosity of about 10�9W.
To do even better, note that most of the mass of a material is in its nuclei.

If those have quadrupole moments and can be persuaded to rotate together,
then the e¤ective rotor length becomes smaller by a factor of 104. That alone
multiplies the luminosity by another factor of 108 and gets us to about a tenth of
a watt. The strength to mass ratio of nuclei is also much higher than chemically
bound materials, so a nuclear rotor system would be capable of producing large
amounts of gravitational wave power.
There is a very big catch to this method of increasing the luminosity of

gravitational wave generators. The gravitational interaction is smaller than
the electromagnetic interaction by about 20 orders of magnitude. The energy
stored in a system of molecular scale rotors would couple to the electromagnetic
�eld much more easily than it does to gravity and the energy would dissipate
electromagnetically before any gravitational waves could be generated. The
collection of rotating nanotubes that we have been contemplating would actually
release all of its energy as a high energy pulse of infrared radiation that would
immediately be converted into heat. Since the energy stored in the contemplated
ton or so of spinning buckytubes would be more than is normally stored in
chemical explosives, the result would be impressive. The nuclear rotor system
would, of course, produce an even more impressive explosion.
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