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an extensively repeated baseline sequence and a „forecast‟ sequence that adds to the 

baseline a forecasting game that allows identification of signaling intentions.  Forecast 

sequence results indicate that signaling intentions considerably exceed those that are 

counted under a standard signal measure based on previous period prices.  Nevertheless, 

we find essentially no correlation between either measure of signal volumes and collusive 

efficiency.  A second experiment demonstrates that underlying seller propensities to 

cooperate more clearly affect collusiveness.   
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1. Introduction 

 

Although not illegal, “tacit” collusion, or coordinated pricing, is a primary concern of 

antitrust authorities.
1
  In the United States, horizontal merger enforcement activity 

focuses extensively on preventing the formation of market structures that facilitate tacit 

collusion.
2
  When assessing the likelihood of coordinated behavior, antitrust authorities 

attempt to identify factors that affect the capacities of competitors to establish a common 

price and to develop an arrangement-maintaining enforcement mechanism.
3
  

Evaluations of the relative importance of such factors can help inform antitrust 

policy.  Laboratory studies provide a useful complement to more standard empirical and 

theoretical work on tacit collusion, because the laboratory allows control over costs, 

demand conditions, information flows and seller communications unavailable in natural 

contexts.  This control allows a direct assessment of the extent of supra-competitive 

prices and of the factors that facilitate such outcomes.  In some laboratory market 

contexts, such as duopolies and market designs where some or all sellers have unilateral 

market power, supra-competitive prices arise frequently.
4
   More interesting for the study 

of tacit collusion are supra-competitive outcomes in market designs where tacit collusion 

is less expected.  Experiments reporting supra-competitive pricing outcomes in „no 

power‟ designs with more than two sellers include Cason and Davis (1995), Cason and 

Williams (1990), Davis and Korenok (2009), and Durham et al. (2004).
 
 

Curiously, the pricing patterns observed in these latter experiments exhibit none 

of the characteristics that antitrust scholars argue typify tacit collusion.  Rather than 

establishing a common price and coming to some agreement as to how that price is to be 

                                                
1  This stands in contrast to cartelization or „explicit collusion‟, which tends to be treated as illegal.  In the 

United States, for example, cartelization is illegal per se, and may be prosecuted as a felony subject to 

treble damages and prison time.  
2  Assessing the likelihood of coordinated pricing post-merger is one of the two primary thrusts of 

horizontal merger analysis.  The other enforcement objective pertains to the likelihood that a proposed 

consolidation will increase unilateral market power.  See, for example, the US Department of Justice and 

Federal Trade Commission Horizontal Merger Guidelines, 1992 (revised, 1997).   
3 Typically cited „suspect‟ factors include product homogeneity, firm symmetry, the frequency of 
communications, multi-market contacts and the stability of demand. 
4  In a review of experiments that focus on collusion, Haan et al. (2009) concludes that instances of 

collusion observed in laboratory markets arise most typically in industries with just two sellers. Examples 

of tacitly collusive outcomes in laboratory market designs with unilateral market power include Davis and 

Holt (1994) and Davis and Wilson (2000).  
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maintained, prices more typically vacillate substantially, both within and across markets, 

with prices ranging from near collusive to competitive levels.
5
  

Two explanations for such „uncoordinated‟ supra-competitive pricing have some 

appeal.  The first pertains to within-market fluctuations.  While sellers may not settle on 

fixed prices, they may, with the signals and responses sent through their pricing activity, 

develop a „language of coordination‟ that allows the implementation and maintenance of 

higher prices.  The bulk of the pertinent laboratory market studies focus on such signaling 

behavior.  A second possible explanation for supra-competitive pricing pertains to 

inherent propensities of sellers to cooperate.  In experiments studying the voluntary 

provision of public goods, underlying cooperative propensities have been identified as an 

important determinant of behavior (e.g., Fischbacher, Gächter and Fehr, 2001, Burlando 

and Guala, 2005, Kurzban and Houser, 2005 and Gunnthorsdottir, Houser, and McCabe, 

2007).  Seller „type‟ however, has received almost no consideration as a factor that might 

explain tacit collusion.
6
  

Papers that study signaling activity in pricing games include Holt and Davis 

(1990), Cason (1995) and Cason and Davis (1995).  In each of these studies sellers were 

given the opportunity to submit non-binding pricing recommendations prior to making 

binding price offers each period.  Results uniformly indicate that such „cheap talk‟ signals 

raise prices, albeit only temporarily.
7
  The limited duration of each of these studies (20 

periods or less) represents one possible explanation for the failure of signals to affect 

overall cooperation levels.  More recently Durham et al. (2004) study signaling activity in 

an experiment where actions are more extensively repeated (80 periods), but where 

sellers may send signals only via pricing decisions.  Durham et al. observe supra-

                                                
5 As a theoretical matter, variable prices and quantities may be part of a trigger strategy equilibrium in an 

environment with demand uncertainty and imperfect information regarding rivals‟ actions (e.g., Green and 

Porter, 1984).  However, we are aware of no model of tacit collusion that has variable prices as part of an 

equilibrium strategy in a full information, constant cost and constant demand environment, where sellers 

possess no unilateral market power in the stage game.  
6  Interestingly, the exceptions include some of the very first oligopoly experiments. Fouraker and Segal 

(1963) classify participants as „cooperative‟, „profit maximizing‟ and „rivalistic‟.  Hoggatt (1967, 1969) 
uses a more continuous classification scheme and examines the effects of „cooperative‟ types against robot 

opponents.   
7 Cason and Davis (1995) do find considerable evidence of persistent tacit collusion in the multi-market 

context they study, in which sellers were given pre-posting opportunities to submit price signals.  However, 

as in the other papers, signaling opportunities appeared to play, at best, a minor role in raising prices.   
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competitive prices in many of their markets.
8
  Further, they report some evidence that 

price signals elicit at least immediate responses.  However, while these investigators do 

not discuss the cumulative effect of signaling activity on cooperation levels, casual 

inspection of their results suggests that signaling volume is a weak predictor of 

cooperation levels.
9
  

The way Durham et al. (2004) measure signaling activity represents one possible 

reason for the weak link between signaling activity and cooperation levels.  Their 

experiment was not specifically designed to study signaling behavior, and to proceed the 

authors had to construct a relatively imprecise measure of signaling activity based on the 

relation between current period price posting decisions and the previous period‟s prices.  

As we discuss below, such a definition measures intended signals accurately only when 

seller expectations regarding rivals‟ price decisions are naively adaptive.  

This paper reports an experiment designed to assess the effects of price signaling 

activity and player cooperativeness (type) on tacit collusion in posted offer markets.  As a 

study of signaling behavior and its effects, our approach improves on Durham et al. 

(2004) by including more extensive repetition and by using a design that allows a more 

precise identification of signaling activity.  We find that nearly all participants send 

signals, and that those signals tend to elicit immediate responses.  However, similar to the 

previous literature, we also find little evidence that signaling activity is a predictor of 

overall collusive efficiency.  On the other hand, seller propensities to cooperate do 

prominently affect overall collusiveness, and these propensities are relatively stable 

across markets.  

The remainder of this paper is organized as follows.  Section 2 overviews the 

experiment design.  Section 3 explains experiment procedures.  Section 4 reports 

experimental results. The paper concludes with a discussion in a short fifth section. 

2. Experiment Design 

We use here a variant of a „swastika‟ design initially studied by Smith and Williams 

(1990) which we examine in an extensively repeated variant of the standard posted-offer 

                                                
8 The market structure used by these authors undoubtedly drives some of their results.  The experiment 

design includes fixed costs that assure sellers a loss in the competitive equilibrium.   
9 See in particular the plot of signals and mean transactions prices for each market in figure 5 (Durham et 

al. 2005, p. 160) 



 4 

institution.  Posted offer rules both parallel many features of retail trade, and may be 

analyzed as a game of Bertrand-Edgeworth competition.  Below we explain our 

implementation of the posted offer trading institution in subsection 2.1.  The subsequent 

subsection 2.2 develops the market design, and subsection 2.3 explains our experimental 

treatments and conjectures.  

2.1. The ‘Near Continuous’ Posted Offer Institution  

Under posted-offer rules, the market consists of a series of trading periods.  In each 

period sellers, endowed with unit costs, simultaneously make price decisions.  Once all 

seller decisions are complete, prices are displayed publicly, and an automated buyer 

program makes all purchases profitable to the buyer at the posted prices.  Figure 1 

illustrates a screen display for a seller S1 in a computerized implementation of the posted 

offer market. As seen in the upper left corner of the figure, seven seconds remain in 

trading period 4.  Moving down the left side of the figure, observe that in this period 

seller S1 has four units, each of which cost $2.00.  To enter a decision, a seller just types 

an entry in the „price‟ box and presses „enter‟. 

In a „near continuous‟ variation of this institution developed recently by Davis 

and Korenok (2009), the maximum length of decision periods is truncated sharply to only 

several seconds.  The large number of periods allowed by this „near continuous‟ 

framework very considerably increases sellers‟ opportunities to both send and respond to 

price signals.  

Numerical and graphical summaries of the previous period‟s prices and earnings, 

as shown in Figure 1 help participants to process market results quickly in the near-

continuous framework.  The „Standing Prices‟ displayed at center top of Figure 1 indicate 

that in just completed period 3, S1 posted a price of $4.20 while S2 and S3 posted prices 

of $4.60 and $4.00, respectively.  The bolded bars shown at the bottom center of the 

figure make it clear that S1 posted the second highest price in period 3.  Further, 

comparison of the bolded bars to the light gray bars, which illustrate prices for the 

previous period 2, shows that sellers S1, S2, S3 all reduced their prices in period 3 

relative to period 2.  In period 3, S1 sold three of the four units he offered and earned 

$6.60 (S1 also earned $1.00 from the forecasting game, explained below), as shown on 
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the „Period Earnings‟ bar chart.  The earnings chart also indicates that seller S1‟s 

earnings in period 3 fell relative to period 2.   

2.2. Market Design 

Figure 2 illustrates supply and demand arrays for the variant of the „swastika‟ design used 

here.  Three sellers are each endowed with 4 units with a constant cost of $2 per unit.  

Aggregate supply is thus 12 units at prices in excess of $2.  The (simulated) buyer 

purchases seven units at any price of $6 or less.  Our implementation of the „swastika‟ 

design differs from previous implementations in that we impose a minimum price of $3 

per unit.  Given the excess supply of four units, in the competitive equilibrium all sellers 

post a price of $3 and earn strictly positive expected earnings of $2.33 per trading period.  

The competitive equilibrium is the unique Nash equilibrium for the market 

evaluated as a stage game.  To see that this outcome is an equilibrium, observe that 

earnings will fall to zero for any seller who unilaterally raises price above a common 

price of $3.  For uniqueness, observe that at common price above $3 a seller could 

increase earnings by posting a price 1¢ below the common price.  For any vector of 

heterogeneous prices above $3, the highest pricing seller will sell nothing.   

This design is useful for studying price signaling, for three reasons.  First, 

previous research indicates that this design frequently stimulates tacit collusion (Cason 

and Williams, 1990, Davis and Korenok, 2009).  Second, the simple demand and cost 

conditions help participants understand the underlying market structure, thus reducing the 

number of initial periods participants need to appreciate the incentives that the design 

induces.  Third, this design, in conjunction with a forecasting treatment described below, 

helps isolate signaling activity.   

2.3. Treatments and Conjectures   

Our primary experiment consists of two treatments:  a „baseline‟ treatment, and a 

„forecasting‟ treatment.  

2.3.1. Baseline Treatment  

In the baseline treatment, participants make price decisions in an extensively repeated 

market, using the supply and demand arrays shown in Figure 2.  Each period lasts a 

maximum of 12 seconds.  Decisions in the baseline treatment allow us to verify that tacit 

collusion persists in this variant of the swastika design.  In particular, we are concerned 
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that the guarantee of positive earnings induced by our inclusion of a minimum admissible 

price does not undermine the tacitly collusive behavior observed in other markets.  This 

is our first conjecture. 

Conjecture 1(a):  Tacit collusion in our variant of the ‘swastika’ design is resilient to the 

inclusion of a minimum admissible price that guarantees a positive profit.  

 

Results of the baseline treatment are further useful in that they allow an analysis of the 

effects of other treatments, as discussed below. 

2.3.2. Forecasting Treatment   

To study signaling behavior,  Durham et al. (2004) define a price signal as “any price 

submitted by any firm that is greater than or equal to the lowest posted price that failed to 

attract buyers in the previous period” (p. 155).  This definition suffers the potential 

deficiency that it accurately identifies signals only when sellers have naively adaptive 

expectations, i.e., expectations based only on the immediately preceding period 

outcomes.  If sellers form expectations differently, the Durham et al. definition may both 

include some price postings that were not intended to be signals, and may exclude other 

postings that were.  For example, if prices are trending upward, their measure may 

errantly include as signals those prices posted by sellers who expect rivals to continue 

raising their prices. Reasoning identically, rivals may not regard such postings as signals.  

Similarly, if prices are trending downward, their measure would miss any signals sent by 

a seller who expects rivals to post lower prices, and attempts to interrupt or slow the 

downward trend by submitting price postings that either maintain current price levels, or 

decrease the price level by less than rivals.   

In an effort to isolate price signaling in our laboratory markets independent of 

expectational assumptions, we introduce a „forecasting‟ treatment where we directly elicit 

sellers‟ expectations.  In this treatment, sellers predict the maximum price their rivals will 

post in the subsequent period.  If a seller‟s forecast is within 5¢ of the subsequently 

observed maximum price posted by rivals, the seller earns a „high‟ forecast prize of 

$1.00.  If the seller‟s forecast is within 25¢ of the rivals‟ maximum, the seller earns a 

„low‟ forecast prize of 50¢.  Otherwise the forecast prize is zero.   

A review of the screen display in Figure 1 illustrates the presentation of the 

forecasting game to sellers.  After posting a price, the cursor moves to the „forecast‟ box.  
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The seller then enters a price forecast and presses „enter‟.  Forecast earnings are 

illustrated graphically as supplements to the period earnings bar.  For example, in Figure 

1, S1‟s forecast for period 3 was within 5¢ of the rivals‟ maximum $4.30 so seller S1‟s 

earnings for period 3 are supplemented by $1.00, as indicated by the supplemental shaded 

box in the seller‟s earnings chart.
10

  

Although we did not expect the addition of the forecasting feature to influence 

market outcomes, we recognize that such factors may have unanticipated effects.
11

  In 

particular, Croson (2000) observes that asking players to submit beliefs about the likely 

contributions levels of others (analogous to posting forecasts of others‟ prices here) tends 

to reduce group contributions in a voluntary contributions game.
12

  As a second 

conjecture we explore whether or not our forecasting procedure tends to reduce „collusive 

efficiency,‟ or the extent of tacit collusion in a market. 

Conjecture 1(b).  Relative to the initial sequence, eliciting forecasts does not affect 

collusive efficiency.  

 

The forecasting game, in conjunction with a design where the highest pricing seller sells 

zero units, allows a clean identification of signaling intentions:  any price above a seller‟s 

forecast maximum price will result in sales of zero, and would be irrational unless the 

                                                
10

 Our introduction of a forecasting game emulates the expectations elicitation techniques used in some 

early asset market experiments (e.g., Williams, 1987 and Smith, et al. 1988).  Concerns about biasing 

pricing behavior with the forecasting game are somewhat diminished relative to this earlier literature 

because sellers here are unable to use their market decisions to influence their chances of winning the 
forecasting game. 
11

 One additional minor procedural difference between the baseline and forecasting markets is that we 

obligated sellers to enter a new price and forecast each period, even if they wanted to repeat the same 

posting. (Absent this requirement, we might lose information regarding forecasts in those periods where 

sellers decided they didn‟t want to post a new price).  This difference is minor because participants tended 

to enter new price (and forecast) entries each period even when they repeated their previous period 

decisions.  Periods ended either with the expiration of the maximum time limit, or when all participants 

posted prices.  In both sequences, due either to impatience or an effort to increase hourly earnings, periods 

virtually always ended prior to the time deadline as a result of all sellers posting a price.  Identification of 

sellers who changed price frequently in each treatment provides further evidence that the reposting 

requirement in the forecasting treatment did not stimulate added price volatility.  In the baseline sequences, 

the average seller posted new prices in 76.3% of periods where prices were not initially competitive.  In the 
forecasting sequences the average seller changed prices an almost identical 78.5% of periods.  
12 In a related experiment Wilcox and Feltovich (2002) were unable to replicate the Croson result. 

However, as Wilcox and Feltovich observe, their „elicitation‟ treatment differed from Croson in that they 

required participants only to guess the number of players who would submit positive contributions each 

period, rather than to guess the expected contributions levels.  
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seller intends to send a signal, i.e. to invite rivals to raise their prices.
13

 This forecasting 

treatment permits us to evaluate the Durham et. al. signaling definition as a measure of 

signaling intentions.  In particular, we posit  

Conjecture 2: The Durham et. al. signaling definition provides a weak measure of 

intended signaling activity.  

 

 We are also interested in the relationship between various measures of signaling activity 

and supra-competitive outcomes.  This is a third conjecture.  

Conjecture 3: Price signaling activity is a predictor of collusive efficiency. 

 

Two separate dimensions of conjecture 3 merit discussion.  First is the question of 

whether or not rivals recognize signals and respond to them with immediately higher 

prices.  The second dimension regards the link between overall signaling activity and 

collusive efficiency levels.  Even if rivals tend to respond immediately to signals, signals 

will not necessarily have a lasting impact on overall collusiveness.  Sellers, for example, 

might respond to signals but then quickly undercut each other, resulting in a price history 

that differs little from a competitive outcome.  We will assess both dimensions of 

conjecture 3.  

Note also that although price postings above a seller‟s forecast of maximum rival 

prices accurately measure signaling intentions, such postings may not necessarily be 

perceived as signals by the other sellers.   Indeed, absent some message sent in 

conjunction with a price, virtually no price postings can unambiguously be regarded as 

signals.
14

  Here, we further use data from the forecast sequences to identify 

„communicated‟ signals.  We regard a forecast-based signal as a successfully 

                                                
13 Conceivably, a risk-taking seller might post a price that exceeds his forecast (the expected maximum) 

placing a high weight on the potential for the rival maximum to fall above his expectations.  For such an 

action to be optimal, however, the seller must be extremely risk-preferring.  As shown in table A1 of an 

online appendix, the costs of such „hedging‟ activity are at least half of the expected earnings from posting 

the profit maximizing price under a variety of distributional assumptions regarding a seller‟s beliefs about 

the expected actions of rivals.   
14 Postings above $6 (which occurred only rarely) are the only possible exception.  Instances of price 

„tagging‟ have occasionally been observed in the antitrust literature.  For example in the ATPCO case, 

airlines allegedly annotated price postings with references that communicated pricing intentions to other 

airlines.  For a discussion, see Borenstein (2004).   Also, as a referee observes, price postings in excess of 
forecasts of rivals‟ maximum prices are arguably even less detectable as signals than are price postings in 

excess of previous period prices, since only the latter are delivered with respect to a publicly observable 

reference.  As discussed at the outset of this subsection, however, postings in excess of previous period 

prices cannot be regarded either as intended or communicated signals unless seller expectations are naively 

adaptive.  
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„communicated‟ invitation to raise price if it exceeds the prices of both rivals (and is thus 

out of the money).  In evaluating conjecture 3 we also assess the relationship between 

these communicated signals and collusive efficiency. 

2.3.3. Collusive Efficiency and Propensities to Cooperate  

Market outcomes may be importantly affected by the inherent propensities of participants 

to cooperate or compete.  We assess this propensity by examining whether sellers 

aggressively undercut standing prices.  In a market populated by sellers who do not 

aggressively undercut each other, even one signal might be sufficient to achieve a high 

degree of collusion.  On the other hand, if sellers aggressively undermine each others‟ 

attempts to cooperate, even frequent signals may fail to sustain a high degree of 

collusiveness.  

Here we begin by classifying participants endogenously on the basis of their 

decisions in a set of preliminary markets, as has been done frequently in the VCM 

literature (e.g., Kurzban and Houser, 2005).  A variety of other methods, including 

strategy elicitation (Fischbacher et al. 2001), elicitation of cooperative preferences in a 

related game (Offerman et al., 1996), and the use of questionnaires (Burlando and Guala 

2004) have also been used in the VCM literature.  However, given our uncertainty as to 

the characteristics that drive cooperative behavior in a market game, a classification 

scheme based on previous decisions in a similar environment seems a most reasonable 

starting point.  In our design, high collusive efficiency levels in later markets that are 

populated by sellers who were, on average, „cooperative‟ in the preliminary markets, 

would indicate of a link between stable propensities to cooperate and resulting collusive 

efficiency.   

As stated above our design separates determination of cooperative propensity in a 

set of initial markets from the test of its predictive reach in subsequent markets.  In each 

subsequent experimental market we duplicated the experimental design of the initial 

markets except that participants in a particular subsequent market were homogeneous in 

cooperative propensity.  If cooperative propensities determine performance and are 

relatively stable across sessions, we should observe higher collusive efficiencies in 

markets composed of cooperative types than in the markets composed of competitive 

(non-cooperative) types.  This is a fourth conjecture. 
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Conjecture 4: Individual propensities to cooperate, or seller ‘types’, can predict 

collusive efficiency levels. Markets comprised of sellers who have been identified as more 

cooperative will have higher collusive efficiency levels than markets comprised of sellers 

who were previously identified as less cooperative. 

 

3. Experiment Procedures  

To evaluate the above conjectures we conducted the following experiment.  In a series of 

preliminary sessions, nine (and in one instance twelve) player cohorts are invited into the 

laboratory to participate in three (four) triopolies.  At the outset of each session a monitor 

randomly seats participants at visually isolated computers.  The monitor then reads aloud 

instructions, as the participants follow along on printed copies of their own.  Each session 

consists of two 120 period sequences, a baseline sequence and a forecasting sequence.  

Prior to the first sequence, instructions explain price-posting procedures, as well as the 

minimum admissible price of $3.00.  Participants are also given as common knowledge 

full information regarding underlying aggregate supply and demand conditions.  To 

ensure that participants understand these underlying conditions the monitor elicits 

responses to a series of possible price postings.  After giving participants an opportunity 

to ask questions, the first sequence begins, and consists of 120 periods each with a 

maximum length of 12 seconds.  After period 120, the baseline sequence is terminated 

without prior announcement, and participants record their earnings. 

Following the first sequence, a monitor remixes participants into entirely new 

groups, and reads instructions for a second sequence.
15

  Conditions for the second 

sequence match those in the first, except that the maximum period length is increased to 

18 seconds and the forecasting game is added.  After giving participants time to ask 

questions, the second sequence began.  After 120 periods, this sequence ended, again, 

without prior announcement.  Participants were paid privately the sum of their earnings 

for the two sequences, converted at U.S. currency at a rate of $100 lab = $1 U.S. plus a 

$6 appearance fee, and were dismissed one at a time.   

Participants were volunteers recruited primarily from upper level undergraduate 

business and economics classes at Virginia Commonwealth University.  All participants 

                                                
15 In the nine person cohorts, for example, markets in the initial sequences are ordered (1,2,3), (4,5,6) and 

(7,8,9).  In the second sequence markets shift to (1,4,7), (2,5,8) and (3,6,9).  Thus, for the second sequence, 

each participant is in a market with participants he or she has not been paired with previously.  
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were „experienced‟ in the sense that they had previously participated in a near continuous 

posted offer session, but for a different study, with different supply and demand 

conditions.  No one participated in more than one session.  

Following the initial sessions, we ranked participants by their cooperativeness 

„type‟ and invited groups of nine homogenously cooperative and nine homogenously 

competitive participants to participate in subsequent pair of sessions.  Other than the 

homogeneity of participant types, procedures for the „experienced‟ pair of sessions 

matched exactly the procedures in the preliminary sessions.  The fact that rivals were of 

like types was not revealed to participants.  

Earnings for the initial sessions, which lasted between 80 and 100 minutes, ranged 

from $21 to $46 and averaged about $31.  In the two experienced sessions, earnings 

ranged from $21 to $57 and averaged $37. 

4. Results 

We present data in terms of a collusive efficiency index, which in period t of market j is  

defined as 
NEJPM

NEjt

jt





 


 where jt  denotes realized aggregate period profits, NE 

denotes static Nash (competitive) profits and JPM denotes earnings at the joint 

maximizing level.  Collusive efficiency values range between zero at the competitive 

level and one in the joint profit maximizing outcome.  In our design jt closely parallels 

mean transaction price paths.
16 

 

Figure 3 provides an overview of results for the baseline and forecasting 

sequences, respectively.  Inspection of the panels in Figure 3 provides information 

pertinent to conjectures 1(a) and 1(b).  The clearly positive 
t

  values for the baseline 

sequences indicate that markets do not collapse on competitive outcomes.  Nevertheless, 

we recognize that classifying market outcomes as either „collusive‟ or „competitive‟ is to 

some extent arbitrary.  No well-defined standard has emerged from the behavioral 

                                                
16 In our market design collusive efficiency is essentially a linear transformation of mean transaction prices  

(e.g., )36/()3( 
jt

p , where 6 and 3 are joint maximizing and competitive prices, respectively). The only 

deviation occurs when more than one seller posts a price above $6 in a period. We evaluate results in terms 

of collusive efficiency rather than transaction prices in order focus on sellers‟ relative success as tacit 

conspirators.  This „collusive efficiency„ index has been used to calculate the efficiency of tacit collusion 

and monopoly power exercise in a variety of contexts, under titles such as a „cooperativeness index‟ 

(Potters and Suetens, 2008) and a „monopoly efficiency index‟ (e.g., Isaac, Ramey and Williams, 1984). 
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oligopoly literature that identifies the level of deviations from static Nash predictions 

necessary for an outcome to be „collusive.‟ Sellers in laboratory markets rarely settle on 

zero variance outcomes, and the current environment is no exception.  In both our more 

„competitive‟ and more „cooperative‟ market sequences, high outcome variability was a 

persistent feature.
17

   

To distinguish this inevitable noise from sellers‟ success in raising prices, we 

adopt the convention of defining a segment of periods as „collusive‟ if 
j

  >.10, meaning 

that sellers on average extract more than 10% of the supra-competitive profits available 

from joint maximization.  As indicated by the entries in column (4) of Table 1, using this 

measure we can reject with high significance the null hypothesis that baseline markets are 

competitive, for periods 1-60, periods 61-120, and overall, using the Wilcoxon test.
18

  At 

the same time, sellers in the baseline sequence were rarely particularly efficient 

conspirators.  As seen in column (2) of Table 1, average collusive efficiency levels 

reached only 0.32 in the last 60 periods of the baseline sequences.  Finally, as suggested 

by the breadth of the inter-quartile ranges for mean collusive efficiency rates, shown in 

Figure 3, outcomes varied widely across sequences.  For the baseline sequences, 
j

 < 0.1 

in two of the 16 baseline sequences, and 
j

  >0.5 in another three sequences.  Combined, 

these results represent a first finding.  

Finding 1(a): Mean collusive efficiency levels above those consistent with a competitive 

outcome are frequently observed in our version of the swastika design where sellers earn 

strictly positive earnings in the competitive equilibrium.  

 

Mean and inter-quartile ranges for collusive efficiency in the forecasting 

sequences, shown in the lower panel of Figure 3, parallel results for the baseline markets.  

Sellers again tended to achieve supra-competitive outcomes.  As summarized in column 

(5) of Table 1, using the Wilcoxon test the null hypothesis that collusive efficiency is 

10% or less can be rejected with high significance for the segments consisting of periods 

1-60, periods 61-120, and overall.  However, as with the baseline sequences, the width of 

                                                
17  For example, only one of the 32 combined baseline and forecast sequences stabilized on a single-price 

outcome (this was a competitive baseline sequence).  Mean contract price plots for individual baseline and 

forecast markets appear as Figures A-1 and A-2 in an online appendix. 
18 In the discussion of results we term results as „highly significant‟ if p<.01, „significant‟ if p<.05 and 

„weakly significant‟ if p<.10.  
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the inter-quartile ranges in the forecast sequences again suggests that outcomes were 

quite variable across markets.  For example, in the forecasting treatment 
j

 < 0.10 in two 

instances and 
j

 > 0.50 in six instances.  

Comparing the upper and lower panels of Figure 3 suggests that sellers exhibited 

somewhat higher collusive efficiencies in the forecasting sequences, particularly in the 

initial 60 periods.  However, as indicated in column (6) of Table 1, the data are too 

dispersed to conclude that these differences are significant.  Further, comparing mean 

entries in columns (2) and (3), observe that the overall lower collusive efficiencies of the 

baseline sequences are driven largely by outcomes in the first 60 periods.  Since the 

baseline sequences uniformly preceded the forecasting sequences, the comparatively 

lower initial collusive efficiencies in the baseline sequences may quite possibly be 

attributable to learning effects.  In any case, the forecasting treatment clearly does 

nothing to dampen prices in this design, as results by Croson (2000) would suggest.  This 

is a second result. 

Finding 1b: The addition of a forecasting treatment does not significantly affect collusive 

efficiency.  

 

These initial results allow us to focus more specifically on the larger issues: the effects of 

signaling and propensities to cooperate on collusive efficiency.  We consider first 

signaling behavior. 

4.2. Signaling and Collusive Efficiency  

In this subsection we first compare our results with previously generated results by 

examining signals defined in terms of previous period prices and the effects of these 

signals on collusive efficiency.  Then we consider why the accuracy of this measure 

might be questionable, and evaluate an alternative signal measure based on seller 

forecasts. 

4.2.1. Signaling under the Durham et al. Definition 

Applying the signal definition developed by Durham et al. (2004) to the present context, 

we define a signal sd as a price posting that either exceeds either the maximum price 
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posted in the previous period, or the $6.00 limit price.
19

  A first pertinent question 

regarding such signals is whether or not they elicited responses from sellers.  Columns 1 

and 2 of Table 2 present results of a regression of lagged transaction prices and signals, 

sent under definition sd for the baseline and forecasting sequences, respectively.  

Generally, we estimate in Table 2 

jtjtssjtpjt
Ipcp  

 1*,1
,    (1) 

where 
1,* tjs

I is an indicator variable of the signal of type s* sent in market j during 

period t .  In columns (1) and (2) signals s* are sd signals. To control for possible 

interdependencies within markets, we cluster by markets and estimate robust standard 

errors.  

As the large and highly significant coefficients on Isd suggest, actions classified as 

signals sent under sd tend to elicit next period responses from sellers, both in the baseline 

sequences (summarized in column 1) and in the forecasting sequences (shown in column 

2).  These results closely parallel results observed previously by Durham et al. (2004). 

A broader question regards the relationship of signaling activity under the 

Durham et al. definition to collusion levels across markets.  To assess relative signaling 

activity as a predictor of overall collusive efficiency across markets, we regress the 

number of sd signals on mean collusive efficiency values for each market 
j

  for the 

initial and forecasting treatments combined.  As a check for possible treatment effects we 

introduce both intercept (‘fcst’) and slope („sd fcst‟) terms for the forecasting sequences, 

as summarized in equation (2).  

32)008.0()005..0()23.0()145.0(

02.0)(009.0001.031.025.0ˆ 2*





n

Rfcstssfcst
jddj


 (2) 

As is clear from equation (2), signal volumes collected under sd organize essentially none 

of the variation in collusive efficiencies observed across sessions.  Other than the 

intercept, none of the individual parameters are significant, and for the regression as a 

whole, 2
R =-0.02. 

4.2.2. Are Seller Expectations Naively Adaptive?  

                                                
19 In our design, the maximum price posted in a period is the lowest price that failed to yield a transaction 

(unless the maximum price was shared by two sellers). Price postings above $6 can uniformly be 

interpreted as signals since sellers know that the buyer will purchase no units at such prices. 



 15 

For price postings counted as signals under the Durham et al. definition to represent 

plausibly either intended or communicated signals, seller expectations about rivals‟ 

actions must be naively adaptive.  The forecasting treatment allows insight into the extent 

to which this assumption is correct: a seller has naively adaptive expectations if the 

seller‟s forecast of his or her rivals‟ maximum price equals the maximum price that rivals 

posted in the previous period.  However, a comparison of forecasts and previous period 

postings in the forecast sequences suggest that this is not the case.
20

  Overall, sellers 

submitted forecasts consistent with naively adaptive expectations only 23% of the time.  

Further, many of these consistent choices occurred in markets where prices had collapsed 

on the $3 competitive outcome.  Confining attention to those periods where the maximum 

rivals‟ price exceeded $3, sellers made choices consistent with naively adaptive 

expectations only 11% of the time.  That seller expectations are generally not naively 

adaptive provides some basis for skepticism regarding the extent to which postings 

counted as signals under sd  reflect either signaling intentions, or instances where 

messages regarding cooperative intentions were communicated.  

4.2.3. Forecast-Based Signals 

The forecasting sequences allow a refined identification of signaling behavior. In these 

sequences we can isolate signaling intentions as price postings that exceed own forecasts 

of the maximum price that rivals will post in the upcoming period.  Formally, we define a 

„forecast signal‟ („sf‟) as a price that is either in excess of a seller‟s forecast of rivals‟ 

maximum posted price for a period or above $6.00.   

The histogram in Figure 4 plots the incidence of postings counted as signals under 

sf  and sd in the 16 forecasting sequences.  As seen in the histogram, the set of postings 

counted as signals under sd differ markedly from the set of signals identified as intended 

under sf.  While sellers on average sent less than 10 signals per sequence under sd, they 

averaged nearly 21 per sequence under sf.  Further, signaling activity under sf is far more 

dispersed.  Under sf 13 of 48 participants sent 30 or more signals, while under sd no one 

sent more than 29 signals.  

                                                
20 A histogram plotting the frequency of forecasts consistent with naively adaptive expectations appears as 

Figure A4 of an online appendix.  



 16 

The higher incidence of signals under sf suggests that sellers‟ interests in 

cooperation may considerably exceed the levels indicated by sd.  Notably, in some 

circumstances sf  systematically captures intentions missed by sd. In particular, while both 

sf and sd can capture efforts to encourage other sellers to raise price from a low level, only 

sf  can capture signals intended to retard the erosion of market prices from a high level.  

Further, unlike signals sent under sf, many price postings interpreted as signals under sd 

were „unintended‟ in the sense that a seller expected rivals‟ prices to be higher than the 

previous period‟s maximum price.  As seen in row (2) of Table 3, 28.3% of the signals 

sent under sd (128 of 453) were „unintended‟ in the sense that a seller posted a price 

above the market maximum for the previous period, but below their forecast of their 

rivals‟ maximum price. 

Although the sf  signal definition reveals a high frequency of signaling intentions, 

we also observe that in many instance sellers may have failed to communicate their 

intentions.  If a signaler underestimates the expected maximum price of his rivals, then 

his signal will fall below the actual maximum in the upcoming period, thus masking his 

signal.  As summarized in row (3) of Table 3, 27.6% of signals sent under sf  (275 of 998) 

were „masked‟ in the sense that the signal price is below the maximum price charged by 

rivals in the period of the signal.  Forecast signals are not uniquely susceptible to being 

missed in this way.  As seen in the right column of row (3) nearly 15% of signals sent 

under sd (62 of 453) were similarly „masked‟.  Given the above comparison of sd and sf 

signals, it is not surprising that 67.4% of signals sent under sf  (674 of 998) were missed 

by measure sd, and that the average simple correlation between sd and sf is only 0.41, as 

shown in row (5).  These observations form a second finding. 

Finding 2: Signaling activity measured under sf reveals a stronger interest in 

cooperation than is suggested by the use of the sd measure. Further, sd is far from a 

subset of sf.  

 

Further exploitation of forecast sequence data allows a refinement of forecast 

signals that can be interpreted as both intended and communicated.  Define sfp as a signal 

under sf  for which the posted price either (a) strictly exceeds the maximum price posted 

by rivals in period t or (b) exceeds $6.  Thus, price postings counted as signals under the 

sfp measure are both intended (since they exceed a seller‟s forecast of the maximum 
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price), and can reasonably be viewed as communicated (since it is clear to all participants 

that the posting is out of the money). 

A total of 631 signals were sent under sfp , considerably less than the aggregate 

signal volume recorded under sf (998),  but considerably more than the aggregate volume 

recorded under sd (453).  As shown in column (3) of Table 2, the single period price 

response to sfd signals (21¢) is less than half the single period response for sd signals 

(45¢), a result that is unsurprising in light of the much higher volume of of sfp signals.  

Moreover the alternative definitions measure distinct activities: the average within-

market correlation between sd and sfp signals is 0.32, and the correlation between sd and 

sfp signal volumes across markets is 0.46.   

Nevertheless, sfp signal volumes are no better predictor of collusive efficiency 

levels across markets than is sd  as equation (3) indicates.
 21

  

16)004.0()19.0(

07.0001.035.0ˆ 2*
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      (3) 

The small and insignificant coefficient on sfp in (3) suggests that even volumes of 

„communicated‟ signals do nothing to explain collusive efficiency across markets.  This 

is a third finding.
 22

    

Finding 3: Price signals tend to elicit increases in transaction price responses in the 

immediately following periods.  However, even restricting attention to ‘communicated’ 

signals, signal volumes and overall collusive efficiency levels are uncorrelated across 

markets. 

 

Importantly, we are not concluding with finding 3 that signaling activity does not 

affect prices. To the contrary, holding sellers constant within market, we expect that 

increased volumes of signals may often yield increased levels of cooperation.  Rather, we 

                                                
21 Notice that regression equation (3) involves only the forecasting sequences.  For that reason, it does not 

include intercept and slope dummies that distinguish baseline and forecast sequences, as in (2). 
22  As an alternative measure of „communicated‟ signals we counted as signals those price postings that 

exceed all sellers‟ forecast of the maximum price for the period.  This „sf-all‟ measure is communicated in 

the sense that it exceeds every sellers‟ expectations.  Nevertheless we view it as inferior to the sfp measure 

discussed in the text in that sf-all signals are not communicated as common knowledge – a seller may intend 

to send a signal, but unless the posting meets some publicly observable criterion (such as being out of the 

money, as with sfp) the sender does not know that the message was received.  In any case, signal volumes 

sent under alternative sf-all measure do no more to explain collusive efficiency than signals measured under 

sfp. Regressing collusive efficiency on sf—all yields. 

16)005.0()14.0(

07.0001.036.0ˆ 2**
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suggest that the differing reactions of seller cohorts to signals across markets may explain 

the absence of a pronounced relationship between signal volumes and collusive 

efficiency overall.  Even if a price unambiguously exceeds a responder‟s expectations for 

the period‟s maximum price, he (the responder) must decide whether the „signal‟ is 

merely an effort by her (the signaler) to lure him into raising prices that she would 

undercut.  Further, even if he believes in the sincerity of her intention to cooperate, he 

may prefer to raise current period profits by undercutting a price leader rather than 

attempt to participate in some sort of longer term coordinated outcome.
23

 

The propensity of sellers to “cooperate” or compete non-aggressively may play as 

large or even a larger role in determining the establishment of a successful collusive 

arrangement than signals themselves. We address this issue in the next subsection. 

4.3 Seller Types and Collusive Efficiency   

As was the case in our discussion of signaling activity, cooperation may 

potentially be measured in a number of ways.  Among other possibilities, „cooperative‟ 

sellers may be those who tend not to undercut the maximum price in the immediately 

preceding period, those who tend to shade under the maximum price in the preceding 

period by only a small margin, or those who tend not to undercut the second highest price 

in the preceding period.  In Table A2 of an online appendix we consider each of these 

possibilities and find that a cooperativeness measure based on a seller‟s tendency to 

undercut the previous period maximum only slightly at most, best organizes observed 

collusive efficiency levels in the preliminary markets.
24

   

More precisely, we define a „price leader minus five‟, or pl-5 index as the 

percentage of periods that a seller posted a price above $3, and was either above $6, or no 

more than 5¢ below the previous period maximum price.  Figure 5 plots mean collusive 

                                                
23 Inspection of sfp volumes and collusive efficiency for some specific markets supports the conjecture that 
signal responses differ importantly across markets and may thus affect collusive efficiency.  In the forecast 

sequence with the highest observed collusive efficiency (
j

 =0.77) only 15 sfp signals were sent, 

suggesting that generally non-aggressive competition rather than signaling activity explains the high 
observed collusive efficiency.  At the same time, in the sequence with the third highest sfp signal volume 

(56 signals) collusive efficiency was only 
j

 =0.07. 
24 The increase in explanatory power associated with using the pl-5 measure over the alternatives mentioned 
in the text is marked.  Regressions of collusive efficiency on these alternative measures of „type‟, similar to 

the regression reported in equation (4) yield no individual parameter estimates that approach significance, 

and in each case 18.0
2
R . 
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efficiencies against the average pl-5 values per market,
jl

p
5

.  The scatter-plot  illustrates 

the impressive organizing power of the pl-5 measure.  Regressing the observed collusive 

efficiency levels on 
jl

p
5

for each market j yields the estimate summarized as equation (4) 

32)59.0()50.0()13.0()11.0(

63.0)(26.009.211.014.0ˆ 2
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The large and highly significant coefficient on 
jl

p
5  in equation (4) reflects the 

high correlation between mean pl-5 values for each market and collusive efficiencies.  

Observe further that the forecast treatment does not significantly affect either the 

intercept (fcst) or the slope (fcstslope) of this relationship.  As indicated by 2
R  in (4) 

the regression explains 63% of the variation in mean collusive efficiencies, a vast 

improvement over the negative 2
R ‟s  in equations (2) and (3).  

 Although we do not at this point argue that with (4) we have established a causal 

relationship between our „price leader minus five‟ cooperativeness measure and collusive 

efficiency, two features of this cooperativeness measure do merit comment.  First, we 

emphasize that the average 
jl

p
5

 measure as a predictor of collusive performance is in no 

sense tautological.  On the contrary, high 
jl

p
5

 values could be associated with very low 

j
 outcomes, and vice versa.  For example, if all sellers persistently posted prices just 

above the $3 minimum 
jl

p
5

 could take on a value of 1 with 
j

  was near zero.  

Alternatively very low 
jl

p
5

values easily can be associated with a near unitary 
j

 .
25

   

Indeed, looking again at Figure 5 notice that despite the generally high correlation 

between collusive efficiency and 
jl

p
5

, we observed some significant outliers, including 

a forecast sequence with a  collusive efficiency of 
j

 =.75 and a 
jl

p
5

=.21 (highlighted 

in the figure with a circle), and a baseline sequence with a collusive efficiency  
j

  =.39 

and a 
jl

p
5

=.29 (highlighted in the figure with a box).  

                                                
25 For example, 

j
 =.0.91 and 

jl
p

5
=0.10  if all sellers dropped in 6 cent increments from a uniform price 

$6 to $5.46 over a series of  repeated 10 period cycles.  
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Second, we observe that individual 
5 ,l i

p
  measures are quite highly correlated 

across sequences ( fcstpbasep ilil 55 , 

  =.55, p<.001), suggesting that the pl-5 index may be a 

fairly stable measure of seller type.  Indeed, given that sellers are remixed into 

completely different groups each sequence, this correlation may understate the stability of 

seller propensities to act cooperatively.  A seller may be quite cooperative by nature, for 

example, but may give up on cooperative efforts in a sequence where her rivals are 

extremely competitive. 

To assess whether seller “type” is a predictor of collusively efficiency we 

conducted a second experiment, using participants from the first experiment. For this 

second experiment we classified individuals on the basis of their average cooperativeness 

measures in the two initial sequences (
il

p
,5
), and then invited those identified as 

„cooperators‟ and „competitors back to form new experimental cohorts. 

The 
il

p
,5
 measure permitted good type separation in the initial markets.  Overall, 

il
p

,5
values in the first session ranged from 0.03 to 0.55 and averaged 0.22.   For the nine 

participants selected to form our „competitive‟ cohort in the subsequent session, the index 

averaged 0.13, with a maximum of 0.21.  For the nine individuals selected to form our 

„cooperative‟ cohort in the second, the index averaged 0.40 with a minimum of 0.27 and 

a maximum of .55.  Except for the homogeneity of types within groups (which was not 

known to participants) procedures for these second subsequent markets duplicated 

exactly those used in the preliminary markets.   

Figure 6, which plots 
il

p
,5
 values in the second session against comparable 

values in the preliminary session, summarizes results of these out of sample (subsequent) 

markets.  Type appears to be quite stable across sessions.  Initially competitive and 

cooperative types form separate clusters in the second session roughly along the 45° line.  

The correlation between initial session and subsequent session 
il

p
,5
values is a highly 

significant  =0.69 (p<0.001). 

Further, differences in propensities to cooperate powerfully impact collusive 

efficiency levels. The mean collusive efficiency level in the six markets with 

„cooperative‟ types (76.4) is almost four times the mean cooperation rate in the six 
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markets with competitive types and is more than double the mean rate in the 32 

preliminary markets (34.2) in which cooperative and competitive types were not 

controlled for.  These results combine to form a fourth finding. 

Finding 4: Sellers’ propensities to cooperate strongly influence collusive efficiency.  

Collusive efficiencies are higher in markets where sellers were previously identified as 

cooperative than in markets where sellers were previously identified as competitive.  

Further, out-of-sample, markets composed of homogeneously cooperative types achieved 

higher average collusive efficiency than markets in which seller types had not been 

controlled for. 

 

5. Discussion  

This paper investigates two dimensions of behavior that may explain tacit 

collusion in the absence of any obvious coordinating mechanism: price signaling activity 

and a propensity for participants to behave cooperatively or competitively.  With regard 

to signaling, we are unable to find any obvious simple link between signaling activity and 

collusiveness that is predictive across markets even with extensive repetition and an 

enhanced capacity to identify intended and „communicated‟ signals.  On the other hand, 

we find that individual propensity to cooperate, seller „type‟, is relatively stable across 

markets, and that type variations prominently affect collusive efficiency.   

Our findings are important for two reasons.  First, seller type represents an 

identifiable determinant of tacit collusion within the laboratory.  Failure to control for 

type will at least significantly increase the variability of market outcomes, and will bias 

results if subjects are drawn from populations that are not random with respect to type. 

Second and more generally, although sellers in natural contexts may certainly 

develop a „language of coordination‟ via their pricing activity, our results suggest that at 

least in some situations an underlying propensity for sellers to cooperate may sustain 

collusion absent the development of such a language.  For that reason, attention to 

characteristics that may reveal a propensity to cooperate, in the sense that sellers do not 

aggressively undercut rivals, may be merited.  In this respect our results are consistent 

with the call by Baker (2002) for increased attention to „maverick‟ firms in horizontal 

merger analysis.  In our markets, for example, although cooperative types were 

sometimes able to maintain quite high levels of collusive efficiency in homogenous-

group markets, cooperators benefited considerably from the elimination of low pricing 
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„mavericks.‟  For the nine „cooperative‟ sellers who we invited back to participate in a 

second session, average collusive efficiencies for the homogenous markets in which they 

participated were 37% higher, and average earnings 87% higher than those in the initial 

mixed-group markets.  

In closing we mention two areas for future investigation regarding the relationship 

between seller type and market performance.  First, an investigation of the factors 

underlying cooperativeness is merited.  Cooperative sellers may be driven by some sense 

of altruism, as is frequently the focus of discussion in the VCM literature.  However, 

successful cooperation in a market context is personally profitable, and so other factors 

such as strategic sophistication, low discount rates, and preferences for risk are also 

potentially influential explainers.  Identifying the mix of factors consistent with 

cooperativeness might help identify characteristics of sellers prone to tacit collusion in 

natural contexts.  Second, it would be useful to examine the importance of seller types in 

environments less conducive to tacit collusion.  Our market, with a small number of 

symmetric sellers who interact extensively, contains a number of „facilitating‟ factors.  

Exploration of the importance of seller type in environments that are less conducive to 

tacit collusion would be of some policy interest as it would allow some assessment of the 

importance of seller type relative to the more standard structural indicators of tacit 

collusion. 
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Figure 1. Screen Display for a „Near Continuous‟ Posted Offer Institution  

 

 

 

 

 

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

0 3 6 9 12

S

D

Q uantity

Price

  S1    S1    S1    S1     S2    S2    S2     S2     S3    S3     S3     S3

       Excess Supply

p c

 
Figure 2: Supply and Demand Arrays for a Three-Seller Swastika Design 
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Figure 3.  Collusive Efficiencies: Means and Inter-quartile Ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  A Comparison of sf and sd.  
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Figure 5. Mean Collusive Efficiencies (

j
 ) and Mean Cooperativeness (

jl
p

5
) of 

participants in market j.  

 

 

Figure 6. 
il

p
,5

Cooperativeness Measures across Sessions. 
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Table 1.   (s.d.) 

Periods  Treatment  Ho 

(1)  (2)  

Baseline 

(3)  

Forecast 

 (4) 

B
 .10 

(5) 

F
 .10 

(6) 

FB
   

1-60  0.26 (0.15) 0.41 (0.24)  0.00 0.00 0.14 

61-120  0.32 (0.25) 0.37 (0.37)  0.00 0.00 0.60 

All  0.29 (0.18) 0.39 (0.39)  0.00 0.00 0.34 
Notes: Entries in columns (4) and (5) are Wilcoxon p-values (one tailed tests).  Entries in column (6) are 

Mann Whitney p-values (two-tailed tests). 

 

 

 

 

 

Table 2. Signals and Transactions Prices 

Dependent Variable: 
jt

p  

 Sequence 

 Baseline Forecast 

 (1) (2) (3) 

Constant 0.37
***

 0.36
***

 0.47
***

 

 (0.09) (0.11) (0.12) 

1jt
p  0.89

***
 0.89

***
 0.87

***
 

 (0.03) (0.03) (0.03) 

Isd 0.32
***

 0.45
***

   

 (0.03) (0.06)   

     

Isfp   0.21
***

 

   (0.04) 

     

Number of clusters 16 16 16 

Number of observations 1872 1872 1872 
2

R  0.80 0.79 0.77 

F( 2, 15) 1152.82
***

 510.48
***

 475.5
***

 
Notes: Robust standard errors in parentheses are adjusted for clustering at the market 
level.  Significant at * 10 percent level; ** 5 percent level, *** 1 percent level. 
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Table 3. Comparing sf and sd 

 

Signal Measure sf sd 

 

(1) Number (average per seller) 998 (21.0) 453 (9.4) 

 

(2) Unintended Signals (% of Signals)  128 (28.3%) 

 

(3) Masked Signals (% of Signals) 275 (27.6%) 66 (14.6%) 

 

(4) sf signals missed by sm  (% of Signals) 674 (67.4%)  

(5) Correlation 41.0
,


fm ss

  

Key: Masked Signals‟ under sf are prices less than $6 that exceed forecasts, but are 

below the period‟s maximum price.  Masked signals under sd are prices less than $6 that 

exceed the previous period‟s maximum price, but are below the maximum posted by 

others in the current period.  „Unintended‟ signals under sd are postings below the period 

forecast, but above the previous period‟s maximum price.  Signals missed by sd are 

signals sent under sf  that were not recorded as signals under sd . 

 

 

 

 


