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ABSTRACT. For a triple consisting of a weakly negative definite plumbed
3-manifold, a root lattice, and a generalized Spin®-structure, we con-
struct a family of invariants in the form of a Laurent series. Each series is
an invariant of the triple up to orientation preserving homeomorphisms
and the action of the Weyl group. We show that there are infinitely
many such series for irreducible root lattices of rank at least 2, with
each series depending on a solution to a combinatorial puzzle defined
on the root lattice. Our series recover certain related series recently
defined by Gukov-Pei-Putrov-Vafa, Gukov-Manolescu, Park and Ri as
special cases. Explicit computations are given for Brieskorn homology
spheres, for which the series may be expressed as modified higher rank
false theta functions.

INTRODUCTION

The Witten-Reshetikhin-Turaev (WRT) invariants provide a powerful
framework for constructing invariants for links and 3-manifolds. The con-
struction uses as input the data of a modular tensor category and the choice
of a presentation of the 3-manifold via Dehn surgery on a framed link in the
3-sphere, with the resulting invariants being independent of this choice.

An ongoing pursuit in quantum topology revolves around the categori-
fication of WRT invariants. Recent progress has been made in this direc-
tion, particularly through a physical definition of new invariant series for 3-
manifolds in Gukov-Pei-Putrov-Vafa [GPPV] and Gukov-Manolescu [GM].
These series, usually denoted as Z (q), require the choice of a Spin®-structure
on the 3-manifolds. They arise as the Euler characteristic of a physically-
defined homology theory [GPV, GPPV] and are expected to converge to the
WRT invariants in some appropriate limits. A mathematical definition of
such invariant series is currently available only for the 3-manifolds known as
weakly negative definite plumbings, a class that contains for example all neg-
ative definite plumbings and is reviewed in §1.4. For this class, we extend the
construction of these series and obtain infinitely many new invariant series
by incorporating the data of an irreducible root lattice of rank at least 2.

Our quest was initially inspired by Akhmechet-Johnson-Krushkal [AJK],
who show that in the case of megative definite plumbed 3-manifolds, the
series Z (¢) fits in an infinite family of invariant series. Specifically, an in-
variant series for a negative definite plumbed 3-manifold together with a
Spin®-structure is defined starting from a plumbing presentation for the 3-
manifold. As any two plumbing presentations are related via a series of
two Neumann moves (§1.5), proving invariance is equivalent to checking
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invariance under the two Neumann moves. Moreover, the series Z(q) is
invariant with respect to conjugation of Spin®-structures. For an arbitrary
series, the invariance under the two Neumann moves and under the conjuga-
tion of Spin®-structures imposes some constraints on the series coefficients.
It is shown in [AJK] that there are infinitely many solutions to such con-
straints, with the series 7 (¢) giving one example. Explicit computations in
the case of Brieskorn spheres were presented in [LM].

When considering the more general case of weakly negative definite plumb-
ed 3-manifolds, any two plumbing presentations are related via a series of five
Neumann moves, with three extra moves complementing the two moves from
the negative definite case. While the series Z (q) (specifically, its refinement
from Ri [Ri]) remains invariant, it is natural to ask whether Z (¢) is unique
in this regard. In other words, we ask whether there are modifications of the
series Z (¢) which satisfy the constraints given by the five Neumann moves
and the conjugation of Spin®-structures and thus remain invariant for weakly
negative definite plumbings.

Before addressing this question — the answer will be given in the next
Corollary 1 — we point out that Park [Par| defines more generally an in-
variant series Z (q) for weakly negative definite plumbed 3-manifolds starting
from the data of an arbitrary root lattice, with the series from [GPPV, GM]
coinciding with the data of the root lattice A;. The series requires the choice
of a generalized Spin®-structure depending on the root lattice, reviewed in
§1.6. The space of generalized Spin®-structures is affinely isomorphic to the
first homology group of the manifold with coefficients in the root lattice
(1.4). The Weyl group of the root lattice acts on the generalized Spin®-
structures, extending the conjugation of the Spin-structures in the A case.
The series Z(q) from [Par| is invariant under this action of the Weyl group.

Thus we ask more generally whether, for an arbitrary root lattice, the
invariance under the five Neumann moves and under the action of the Weyl
group uniquely determines the series Z (¢) from [Par]. Our main result
provides a general construction that yields the single series Z (q) for the root
lattice A and infinitely many invariant series for irreducible root lattices of
rank at least 2.

Specifically, let M be a weakly negative definite plumbed 3-manifold, and
let @ be a root lattice. We construct a series Yp, (¢) depending on the
ancillary data consisting of a choice of a generalized Spin®-structure a and
what we call an admissible series P(z). We define these admissible series
in §2 as the solutions of a puzzle on the root lattice @), generalizing the
generating series of the Kostant partition function. We prove:

Theorem 1. The series Ypg (q) is:
(1) invariant up to orientation preserving homeomorphisms of M and

(ii) invariant under the action of the Weyl group W on a, i.e.,

YP,G (q) = YP,w(a) (Q) s fOT weW.
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When the admissible series P(z) is obtained from the generating series of
the Kostant partition function of @ as in (2.5), the series Yp, (¢) recovers
the series Z(q) from [GPPV, GM] for Q = A and the series Z(q) from [Par]
for arbitrary Q. A study of admissible series P(z) shows:

Theorem 2. (i) There exist only two admissible series P(z) for the root
lattice Ay, conjugate under the action of the Weyl group S,.

(i) There exist infinitely many admissible series P(z) for an irreducible
root lattice of rank at least 2.

Since Ypqo(q) depends on P(z) only up to the action of the Weyl group
(see Remark 3.2(i)), we deduce:

Corollary 1. For a weakly negative definite plumbed 3-manifold M, a root
lattice @), and a gemeralized Spin®-structure a:

(i) There exists a unique series Ypq (q) for Q = Ay coinciding with E(q)

(it) There exist infinitely many series Ypgq (q) if Q is irreducible and of
rank at least 2.

Brieskorn spheres and higher rank false theta functions. As an ex-
ample, consider a Brieskorn homology sphere M = ¥ (b1, b, b3). In this case,
there exists only one generalized Spin“-structure, hence we remove a from
the notation of the series.

Corollary 2. Let M = X(by,be,b3) be a Brieskorn sphere with pairwise
coprime integers 2 < by < by < by. For a root lattice Q and an admissible

series
P(z) = Z c(a)z?,
a€2p+2Q
where p is the Weyl vector, one has
=¢“ > K2 @ p (bybabs, Dy ws )
w1, we€W

where C is a rational number (given in (6.5)),

Up(dn)= Y cla)d (-1 gsaldatuml?

aE—2p+2Q weW

and
(0.1) Ny we *= 2bob3wq (p) + 2b1b3w2(,0) + 2b1bap € Q fOT wi,we € W.

For Q = A, it was observed in [GM] and in earlier computations of
Lawrence-Zagier [LZ] and Chung [Chu] that the series Z(q) for a Brieskorn
homology sphere is a sum of false theta functions. This is reflected in the
formula in Corollary 2, since for () = Aj, one has that « is odd and ¢(«a) = 1
if «v is negative, while ¢(a) = 0 otherwise. Thus in this case ¥p(d, n) equals
an Eichler integral of a weight 3/2 theta function. For the Poincaré homology
sphere 3(2,3,5), this holds up to an additional summand, see [GM]. For
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FIGURE 1. An hexagon in As. Here the labels p,q,r, s, t, u
represent the values of ¢(«) at the corresponding « € As.

Seifert fibered spaces with three singular fibers, the radial limits of the false
theta function at roots of unity agree with the WRT invariants [LZ, Thm 3J;
hence the conjectural convergence of Z (q) to the WRT invariants is verified
for the Poincaré homology sphere, as observed in [GM].

Similarly, for a higher rank @, it was observed in [Par| that the series
Z (q) for a Brieskorn homology sphere is a sum of higher rank false theta
functions. Again, this is reflected in Corollary 2, as for ¢(«) being determined
by the Kostant partition function as in (2.4), the series ¥p(d,n) is a higher
rank false theta function. Thus Corollary 2 shows how the series Yp(q) for
a Brieskorn homology sphere is a sum of modified higher rank false theta
functions depending on the admissible series P(z).

Root puzzles. Next, we anticipate the definition of admissible series in the
case of the root lattice ) = Ao, and refer to §2 for arbitrary root lattices.
In the Ay case, an admissible series is equivalent to a function

c: 24 = R, a— c(a),

with R a commutative ring, satisfying the following two properties:
(i) For a € @, one has ¢(na) = 0 for n € Z and either n > 0 or n < 0;

(ii) For every hexagon in Ay as in Figure 1, one has

{ 1 if the hexagon is centered at 0 € Ag,
ptqg—r+s—t+u= )
0 otherwise.

Finding such a function ¢ entails solving a combinatorial puzzle on the
root lattice. The two properties (i)-(ii) guarantee that the resulting series
Ypa(q) for a 3-manifold is invariant under the Neumann moves.

An example of such a function is provided by an appropriate affine trans-
formation of the Kostant partition function, see Figure 3 and §§2.2 and
2.6. We give two ways to construct new admissible functions from a given
admissible function yielding infinitely many examples in §2.7.

We define a similar puzzle for an arbitrary root lattice in §2, with the
above properties (i)-(ii) generalized by the next properties (P1) and (P2),
see Lemmata 2.3 and 2.5. The Kostant partition function provides again a
solution, and we show how to construct infinitely many examples in §2.8,
hence Corollary 1(ii) follows.
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Open questions. We conclude this introduction with some open questions.
As the series Z (q) was originally constructed as the Euler characteristic of a
physically-defined homology theory, it would be interesting to see whether
the series Yp, (¢) for an arbitrary admissible P(z) coincides with the Euler
characteristic of some homology theory as well.

Moreover, the root lattice @ in [Par] was determined by a connected,
simply connected, semisimple Lie group acting as gauge group. It would be
interesting to see whether a gauge group plays some role in the geometry
behind the series Yp, (¢).

For the series Z (¢), the minimal exponent of ¢ appearing in the series
is essentially the Heegaard-Floer d-invariant (see [AJK, Rmk. 3.3]). Upon
varying the root lattice @@ and the admissible series P(z), a natural question
is whether the minimal exponent of ¢ appearing in the series Ypq4(q) holds
a similar geometric interpretation.

Finally, the series 7 (q) for a Brieskorn sphere and @@ = A; is an example of
a quantum modular form, see Zagier [Zag]. This fact extends to a larger class
of 3-manifolds, see [BMM2, BMM1]. It would be interesting to determine
whether the series Yp(q) from Corollary 2 enjoy this property as well.

Structure of the paper. Root lattices, plumbings, Neumann moves, and
Spin“-structures are reviewed in §1. We define and study the admissible
series P(z) in §2 and prove Theorem 2 there. The series Ypgq (q) is defined
in §3. The proof of Theorem 1 is presented in §5 by applying auxiliary
results from §4. Finally, the proof of Corollary 2 is presented in §6.

1. NOTATION AND BACKGROUND

Here we review the necessary background on root lattices, plumbed 3-
manifolds and their homology, Neumann moves, reduced plumbing trees,
and generalized Spin®-structures.

1.1. Root lattices. We start by reviewing some basic facts on root lattices
that will be used throughout; we refer to [Bou, Hum| for more details.

A root system is a pair (V, A) where V is a finite-dimensional Euclidean
space over R with a positive definite bilinear form (, ), and A C V is a finite
subset of non-zero vectors, called roots, such that:

(i) RA =V,

(ii) for a € A, one has na € A if and only if n = +1;
(iii) A is closed under the reflections through the hyperplanes orthogonal
to the roots; and

(iv) for o, 8 € A, one has 2% €.

Let @ be a root lattice, that is, @ = ZA for some root system (V,A). We
will denote its rank as r := rank(Q). The corresponding weight lattice P is
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defined as

(A @)

(a0

P::{)\GV

EZforaEA}.

Select a set AT C A of positive roots. This is the set of all roots lying
on a fixed side of a hyperplane in V' which does not contain any root. The
Weyl vector p € PN %Q is defined as the half-sum of the positive roots.

A root a € AT is simple if o cannot be written as the sum of two elements

in AT. Simple roots form a basis for V. For simple roots aq,...,q,, the

fundamental weights \q,..., A\, are elements of P such that 28“;73 = 0;;
VRN

for i,j =1,...,7r. These also form a basis of V.

Let W be the Weyl group acting on (). This is the group generated by
reflections through the hyperplanes orthogonal to the roots. For w € W,
the length ¢(w) of w is defined as the minimum length of any expression of
w as product of such reflections. This is also equal to the number of positive
roots transformed by w into negative roots.

Root lattices are classified by Dynkin diagrams. As an example, the root
lattice Q@ = A; is Z with bilinear form (m,n) = 2mn for m,n € Z. In this
case, p = % and W = Sy (the symmetric group on a set of size 2).

More generally, it will be convenient to have the following example in
mind. The root lattice Q = Ay is Za @ Z with (o, a) = (8,5) = 2 and
(o, B) = —1. In particular, the angle between o and [ is 120°, and @ is
the vertex arrangement of the tiling of the Euclidean plane by equilateral
triangles. In this case, A = {*a, £5,+(a+ )} and W = S3. For the set
of positive roots AT = {a, 3, a + B}, the Weyl vector is p = a + 3.

1.2. Plumbings. We will consider closed oriented 3-manifolds that arise
from the plumbing construction. Here we sketch the construction and set
the notation; we refer to [Neu| and [Ném, §3.3] for details.

One starts from a plumbing graph I'. This consists of a graph with some
decorations: for each vertex, one has two integer numbers (called the Fuler
number and the genus of the vertex), and for each edge, one has a sign.
We assume throughout that I' is a tree and that the genus of each vertex is
zero. Since I' has no cycles, one can assume that the sign on all edges is +1
[Neu] (but it will be beneficial to remember that edge signs can change; we
will return to this in §§1.5-1.6). Hence, for our plumbing trees we will only
record the Euler number m, for each vertex v.

For a plumbing tree I', let V(I') be its vertex set and E(I") its edge
set. Choose an ordering of its vertices vy, ...,vs, with s = |V(I')|, and let
mi,...,ms be the corresponding Euler numbers. An edge between vertices
v; and v; will be denoted by (7, 5) € E(T).
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The framing matriz B determined by I' is the s X s symmetric matrix
my; if i = j,
with  Bjj:=1< 1 ifi# jand (i,5) € E(),

0 otherwise.

B := (Bjj); j=1

(More generally, the entries B;; corresponding to the edges are defined to
be equal to the edge signs.) We denote by 0 = o(B) the signature of B and
7 = 7(B) the number of its positive eigenvalues. One has o = 27 — s.

For the plumbing construction, one starts by assigning to each vertex v of
I" an oriented disk bundle over a real surface F, of genus equal to the genus
decoration of v (i.e., genus 0 in our case), with the Euler number of the
bundle equal to m,. Then one constructs a 4-manifold X = X (I") by gluing
together such bundles according to the edge set E(I'). Let M = M(I)
be the boundary of X. This is a closed oriented 3-manifold, called the
plumbed 3-manifold constructed from I'. Alternatively, M may be obtained
by Dehn surgery on a framed link determined by I' consisting of unknots
corresponding to the vertices of I', framings given by the corresponding
Euler numbers, and with two unknots forming an Hopf link whenever the
corresponding vertices in I' are joined by an edge.

1.3. On the homology of the plumbed 3-manifold. The 4-manifold X
has the same homotopy type of the space E of the s real surfaces F,, i.e.,
H;(X;Z)= H; (E;Z) for i > 0. The homology of the 3-manifold M follows
from Lefshetz duality, the Universal Coefficient Theorem, and the long exact
sequence of the pair (X, M).

Specifically, let

L:=H,(X;Z)~ Hy(E;7) = 7°.

The last isomorphism is induced from the choice of an ordering of the real
surfaces E, (or equivalently, the vertices of I'). The natural intersection
pairing of L = Z?* is given by the framing matrix B.

By Lefshetz duality and the Universal Coefficient Theorem, the dual of
the lattice L is

L' = H*(X;Z) = Hy (X, M;Z) = Z°.

This is generated by the transversal disks D, to the surfaces E, at general
points. Hence, the natural map L — L in the bases {E,}, and {D,}, is
given by the framing matrix B.

In the following, we assume that the pairing of L is non-degenerate, i.e.,
det(B) # 0. In this case, one has an inclusion of lattices B: L < L'
From the long exact sequence of the pair (X, M), the boundary operator
L' = Hy (X, M;7Z) — Hy (M;Z) yields a short exact sequence

L'JL < Hy (M;Z) - Hy (X;7).
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mi+el 1 mo+el mptel el mi 0 m2
12 12 12
my mo mi mi + mso

S = el

(Ae) (Be) (©)

FiGURE 2. The five Neumann moves on weakly negative def-
inite plumbing trees. Here, € € {+, —}.

From the assumption that I' is a tree and that all surfaces E, have genus 0,
we deduce the vanishing H; (X;Z) = H; (E;Z) = 0. Hence, one has

Hy (M;Z) = L'/L = 7°/BZ°.
In particular, our assumptions imply that M is a rational homology sphere,
i.e., H1 (M, Q) =0.
When det(B) # 0, the framing matrix B is invertible over Q, and the
induced bilinear pairing on L’ is

(Y L'x L' = Q, (v, w) — v' B~ w.

This pairing is induced from B since for x,y € L, one has (Bx, By) = x' By,
thus recovering the pairing of  and y in L.

For a root lattice @ and a lattice L’ as above, the induced bilinear pairing
on L' ®z Q is defined by

() L@zQxL'ezQ—=Q  (v@a,wep) - (v,w)(af).

Here the pairing (v, w) is in L’ and the pairing (a, 8) is in (). This extends
by linearity as follows. For a,b € L' ®7 Q = Z° ®z Q, write a = (a1, ..., as)
and b = (by,...,bs), with a;,b; € Q, for i = 1,...,s. Then the pairing is

(1.1) (a,0) =Y > Bj;'ai,bj).

i=1 j=1

1.4. Negative and weakly negative definite plumbings. A plumbing
tree I' is negative definite if the framing matrix B is negative definite.

A plumbing tree I' is weakly negative definite if the framing matrix B is
invertible over Q and B~ is negative definite on the subspace of Z* spanned
by the vertices of I' of degree at least 3.

A plumbed 3-manifold M is negative definite (respectively, weakly nega-
tive definite) if M may be constructed from some negative definite (resp.,
weakly negative definite) plumbing tree, up to an orientation preserving
homeomorphism.
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1.5. Neumann moves. Here we review the Neumann moves on negative
definite and weakly negative definite plumbing trees. KEach move is be-
tween two plumbing trees and represents an orientation preserving homeo-
morphism between the corresponding plumbed 3-manifolds.

Two negative definite plumbing trees represent the same 3-manifold up to
an orientation preserving homeomorphism if and only if they are related by
a sequence of the moves (A—) and (B—) from Figure 2 (and their inverses)
[Neu, Thm 3.2].

Two weakly negative definite plumbing trees represent the same 3-mani-
fold up to an orientation preserving homeomorphism if and only if they are
related by a sequence of the five moves in Figure 2 (and their inverses) [Neu,
Thm 3.2]. However, these Neumann moves do not necessarily preserve the
weakly negative definite property of the plumbing trees, see [Ri, Ex. 4.2].
In particular, a plumbing tree for a weakly negative definite plumbed 3-
manifold may not necessarily be weakly negative definite, but it may become
so after a sequence of the Neumann moves from Figure 2.

Remark 1.1. For each move, we will use the following observation about
the framing matrices. Let I and I', be the bottom and top plumbing trees,
respectively, and let B and B, be the corresponding framing matrices. A
direct computation shows that the column space of B is isomorphic to a
subspace of the column space of B,. We show this in the case of move
(A+), with the case of the other moves being similar. Assume first that I'
has only two vertices. Then B and B, are

my+ 1 1 0

B:(m1 1> and B, = 1 1 -1
1 mo

After a column operation, B, becomes

ma 1 1
0O 1 0
1 -1 ma

from which it is clear that the column space of B is isomorphic to a subspace
of the column space of B,. Note that the negative edge signs appearing as
the two coefficients —1 of B, can be undone after changing the orientation
of the subspace spanned by the vertex labelled by mo. Indeed, this entails
multiplying by —1 the last row and last column of B,. For the case when I'
has more vertices, a similar block form argument applies.

1.6. Generalized Spin“-structures. Here we review the space of general-
ized Spin®-structures for a plumbed 3-manifold M and a root lattice (). This
space appeared in [Par|. A generalized Spin®-structure will be an input of
the g-series defined in §3.
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Recall from §1.3 that the choice of an ordering of the vertices of I' induces
an isomorphism L' = Z5. Let

Tg = (2 — deg(v1),...,2 — deg(vy)) € Z° = L'
and
(1.2) §:=Tp®2pc L' ®Q

where p is the Weyl vector as in §1.1.
The space of generalized Spin®-structures on M for the root lattice @ is

6+2L/®ZQ
1. Bo(M) = ————=.
(13) o) i= T
For Q = Ay, this is simply
§+ 2L
in“(M) &% ————
Spin®(M) = — 5,

the space of Spin“-structures on M [Ném, §6.10]. Thus Bg(M) generalizes
the space of Spin®-structures for an arbitrary root lattice (). As for the case
@ = Ay, the space Bg(M) is affinely isomorphic to

~ U'®zQ

"~ BL®zQ

The Weyl group W naturally acts component-wise on L' ®7 @, and this
induces an action of W on Bg(M):

w: Bgo(M) — Bg(M), [a] — [w(a)], for w e W.

(1.4) Hy(M; Q)

Proposition 1.2. For a weakly negative definite plumbed 3-manifold M
and a root lattice Q, the set Bo(M) and the Weyl group action on it are
independent of the plumbing presentation for M.

Proposition 1.2 follows from the next Proposition 1.4. This will be used
in the proof of Theorem 3.4.

To prove Proposition 1.2, it is enough to verify that Bo (M) and the Weyl
group action on it are invariant under the Neumann moves from Figure 2.
For each move, we use the notation B: L < L’ and § defined as above for the
terms related to the bottom plumbing tree I', and the notation By: Lo < L.
and &, for the corresponding terms related to the top plumbing tree I',.

For each move, we define a function

R:L'®;,Q — L ®7Q, a+— R(a)

such that the induced map
0+ 2L ®7Q R do + 2L, ®7 Q
2BL ®7Q 2BoLo ®7Q '
is a bijection of sets and is equivariant with respect to the action of the Weyl
group W. Note that for each move, the column space of B is isomorphic

to a subspace of the column space of B,, see Remark 1.1. It follows that
for each representative a of a generalized Spin®-structure for I', there is a

(1.5) [a] = [R(a)]
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corresponding affine space of generalized Spin®-structures for I's, and R(a)
is required to be in such a space.

We proceed by defining the function R for each move. For this, we first
choose an order of the vertices of I' and a compatible order of the vertices
of I's. This induces isomorphisms L' = 7% and L. = 7%, where s and s,
are the ranks of L' and L/, respectively.

Remark 1.3. The choice of an order of the vertices of I' and a compatible
order of the vertices of I', allows one to distinguish for each Neumann move
the parts of the tree that are on the left and on the right of each vertex.

Consider the Neumann move (Ae¢) from Figure 2 with ¢ € {4, —}. For
a € L' ®z Q, write a = (ay,a2) with subtuple a; corresponding to the
vertices of I' consisting of the vertex labeled by mj and all vertices on its
left, and subtuple as corresponding to the vertices of I' consisting of the
vertex labeled by mo and all vertices on its right. Define

(1.6) R: L ®7 Q — Lg Rz Q, (al, CLQ) — (al,(), —Eag)

with the 0 entry corresponding to the added vertex in I';. Recall from
§1.3 that all edges of plumbing graphs have a sign, which determines the
corresponding gluing, and in the case of plumbing trees one can assume
that all edge signs are equal [Neu]. When ¢ = 4, the Neumann move (A+)
involves the change of an edge sign of I';. This change of the edge sign
can be undone after changing the orientation of the subspace of L' ®7 Q
corresponding to one side of the added vertex in I';. Thus the minus sign
multiplying as in the formula for R.

Next, consider the Neumann move from Figure 2(Be) with € € {+, —}.
For a € L' ®7Q, write a = (a4, a1) with entry a; corresponding to the vertex

of I' labeled by m1, and subtuple a; corresponding to all other vertices of I
Define

(1.7) R: L' ®7Q — L, ®zQ, (ag,a1) — (ag, a1 + 2p, €2p)
where the entry €2p corresponds to the added vertex in T's.

Finally, consider the Neumann move (C) from Figure 2. Let vg be the
vertex in I' labeled by m 4+ mg, and let vq, v(, and vy be the vertices in I,
labeled by m, 0, and mao, respectively. For a € L'®7Q, write a = (ay, ao, ay)
with entry ag corresponding to the vertex vg in I', subtuple ay corresponding
to all vertices in I' equivalent to the vertices of I'; on the left of vy, and
subtuple a, corresponding to all vertices in I' equivalent to the vertices of
I's on the right of vo. For g € Q, define

(18) R = RB L/ ®Z Q — L/o ®Z Q7 (G/ﬁ, ap, ab) = (aﬂu ap +/87 07 67 _a’b)
where the entries ag + 3, 0, and 3 correspond to the vertices vy, v(, and vo
in Iy, respectively. Assume that 5 is chosen as follows

2p if deg(vy) = deg(ve) mod 2,
(1.9) § = {

0 otherwise.
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This choice of § will allow one to verify (1.10).

Proposition 1.4. For each Neumann move in Figure 2, the map R as

defined in (1.6)~(1.9) induces a bijection of the sets Bo(M) as in (1.5).
The induced bijection is independent of the order of the vertices of the

plumbing trees and equivariant with respect to the action of the Weyl group.

Proof. For each Neumann move in Figure 2, it is immediate to verify that
R is injective. Moreover, one has

(1.10) R(0+2L ®7Q) C 6+ 2L, @7 Q.
For instance, let us verify this for the Neumann move (C). Select
(ed+2L ®;,Q, and write €= ({y,40,4).
This implies ¢y € (2 — degvy)2p + 2Q). Then in order to have
Rp(€) = (b3, 00 + 5,0, 8, =4,) € 0o + 2L, ®7 Q,
one needs
b+ e (2—degvi)2p+2Q and S e (2—deguv)2p+2Q.

One has degvg = degv; mod 2 if and only if degv; #Z degwvo mod 2. Hence
both of these conditions are implied by the choice of £ in (1.9).

The induced map (1.5) is thus well-defined and injective. Recall that the
column space of B is isomorphic to a subspace of the column space of Bo,
see Remark 1.1. Hence the surjectivity of the induced map (1.5) follows by
a direct analysis of the extra column space of B,. Finally, the equivariance
with respect to changes of the order of the vertices of the plumbing trees
and the action of the Weyl group follows immediately. O

1.7. Reduced plumbing trees. We will use reduced plumbing trees as in
[Ri]. These are defined as follows. Let I" be a plumbing tree. First, define
a branch of I" to be a path in I' connecting a vertex of degree at least three
to a vertex of degree one through a sequence of degree-2 vertices. Define a
branch to be contractible if the branch can be contracted down to a single
vertex by a sequence of the Neumann moves from Figure 2.

A vertex v of I is defined to be reducible if v has degree at least 3 but,
after contracting all contractible branches incident to v, the degree of v
drops down to 1 or 2.

Finally, define I" to be reduced if I" has no reducible vertices. Any plumb-
ing tree can be reduced via a sequence of the Neumann moves from Figure
2. Note that reducing a reducible vertex to a vertex of degree 1 or 2 via a
sequence of Neumann moves may yield a new reducible vertex. For this, the
tree I' becomes reduced after repeatedly reducing all reducible vertices via a
sequence of Neumann moves. Moreover, one has:

Lemma 1.5. By removing contractible branches, a weakly negative definite
plumbing tree becomes reduced while remaining weakly negative definite.
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Proof. We argue that contracting a branch preserves the property of being
weakly negative definite. A branch may be contracted by a sequence of the
Neumann moves from Figure 2 of type (A+), (B+), and those moves of type
(C) where at most one of the two vertices labelled by m; and mg has degree
at least 3. (Moves of type (C) where the two vertices labelled by m; and
mg have both degree at least 3 are not necessary to contract branches. In
fact, these moves do not necessarily preserve the weakly negative definite
property of the plumbing trees, see [Ri, Ex. 4.2]. Hence we avoid using them
in this argument.)

For each one of these Neumann moves, let I' and I', be the bottom and
top plumbing graphs, respectively. We argue that if one of them is weakly
negative definite, so is the other one. As in §1.6, let B and B, be the
framing matrices of I' and I, respectively, and let s and s, be their ranks,
respectively. Let H C Q° and H, C Q*° be the subspaces spanned by the
vertices of degree > 3 in I and T',, respectively. If the Neumann move under
consideration reduces a reducible vertex to a vertex of degree 1 or 2 in I,
then quotient H, by the linear subspace corresponding to that reducible
vertex of degree 3 in I',, and denote this quotient still by H,. Thus we may
assume that H and H, have the same rank.

We proceed to construct a map R: Q° — @°° which induces a linear
isomorphism H = H,. For the moves (A+), consider the map R from (1.6);
for the moves (B=), consider the map

R:Q° — QHI, (ag,a1) — (ag,a1,0)

with notation as in (1.7); and for the move (C), consider the map R = Rg
from (1.8) with 8 = 0. It is immediate to see that for each move, the map
R so defined induces an isomorphism H =2 H,.

Moreover, for each ¢ € H, a direct computation shows that (¢,¢) =
(R(£), R(¢)), with the pairings defined by the matrices B~ and B;! as
in (1.1), respectively. For moves (A+) and (C), this is a special case of a
more general computation later done in (5.2), (5.7), (5.22); the case of moves
(B+) follows similarly. Hence the statement. O

We will use a result from [Ri] showing that two reduced plumbing trees
are related by a sequence of the Neumann moves from Figure 2 if and only
if they are related by a sequence of those Neumann moves from Figure 2
which do not create any reducible vertices [Ri, Prop. 3.4].

2. ADMISSIBLE SERIES

Here we define and study the admissible series P(z). These will be used
to construct invariant series in §3. We end the section with the proof of
Theorem 2.
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2.1. Admissible series. For a root lattice @), consider a formal series
(2.1) P(z):= Z cla)z®
a€2p+2Q

with coefficients ¢(«) in a commutative ring R. Here z* for o € @ (or more
generally, a in the weight lattice) is a multi-index monomial defined as

,
(2.2) 2% = 1_[21.(0"/\">
i=1
+1 +1
with A1,..., A, being the fundamental weights. Hence P(z) € R[z; ?,..., 2 °].

Definition 2.1. A series P(z) as in (2.1) is admissible if

(P1) the product P(z)P(z) is well defined

and

(P2) (Z (—1)¢w) 22w<p>> P(z) = 1.
weW

Before expanding on the properties (P1) and (P2), we give a key example.
2.2. Key example. Consider

(2.3) Wz)= [ |3 = @+0e

acAt \ >0

Expanding, this is

a€2p+2Q
with
number of ways to represent —«

ple) = as a sum of odd positive multiples of positive roots.

For ) = Ajs, the coefficients p(a) are represented in Figure 3.
The coefficients p(«) are related to the Kostant partition function. Specif-
ically, for a € @), the Kostant partition function is

number of ways to represent «

k(o) := as a sum of non-negative integer multiples of positive roots.
One has
k(=% —p) ifae2Q,
2.4 a) =
(2:4) ple) { 0 otherwise.

In other words, one has
(2.5) W(z) =2 2PK(27?)

where K (2) = > ,co k()2 is the generating function of the Kostant par-
tition function.
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FIGURE 3. The nonzero coefficients p(a) for the roots of
length at most 12 in the root lattice As. Here the three
positive roots have length 2 and are marked with dots.

Applying the Weyl denominator formula
(2.6) > (—nf el = TT (2% —279),
weWw aEAT

one has:
Lemma 2.2. The series W (z) is admissible.

Proof. Property (P1) clearly holds. Moreover, property (P2) follows from
the Weyl denominator formula (2.6) and the fact that

(Za o Z—a) Zz—(%—i-l)a -1

i>0
for each «. 0

2.3. Equivalent reformulations. Before giving more examples, it will be
convenient to rephrase properties (P1) and (P2) in more explicit terms.

Lemma 2.3. For P(2) = }_ co, 20 ¢(@)z%, property (P1) is equivalent to
the condition that for o € 2Q), the sum

> clatBe(=p)
BE2p+2Q
has only finitely many nonzero summands. Equivalently, for a € Q, one has

c(na) =0 forn € Z and either n >0 or n < 0.

Proof. Both conditions are equivalent to the fact that only finitely many
terms contribute to each power of z in the expansion of the product P(z)P(z).
O
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Before reformulating property (P2), we mention a lemma that will be
used throughout. Let ¢ € W be the element defined by
(2.7) (a) = —a forall a € Q.
Lemma 2.4. For w € W, one has
(-1 = ()BT =),

Proof. The statement follows by comparing the coefficients of z2%(?) on the
two sides of the Weyl denominator formula (2.6). O

Property (P2) can be rephrased as follows:

Lemma 2.5. For P(z) =} co,100 c(a)2®, property (P2) is equivalent to
the condition that for a € 2Q), one has

1 ifa=01inQ,
EI YL ) I S
0 otherwise.
weW
For instance, the case @ = As yields the rule on the hexagons from

Figure 1 presented in the introduction.

Proof. Select a € 2(Q). By Lemma 2.4, the second condition in the statement
is equivalent to

(2.8) Y D) e(a+2uw(p)) =

weWw

{ 1 fa=01in Q,

0 otherwise.

To show the equivalence of property (P2) and (2.8), write (P2) as

1= <Z (_1)£(Lw) Z?Lw(p)) P(z) _ Z (_1)£(Lw) Zsz(p)P(Z).

weW weW

Here the summands have been rearranged via the involution w +— cw. Since
for each w € W, one has w(p) + tw(p) = 0, then the coefficient of 2 in

zZLw(p)P(z)
is equal to the coefficient of z2+2%() in P(z). Thus the equivalence of

property (P2) and (2.8). O

2.4. Weyl twists. Here we show that twisting an admissible series by the
action of elements of the Weyl group yields admissible series.

For a series P(2) = 3 _ 0,120 c(@)z® and w € W, define the Weyl twist
of P(z) by w as
(2.9) PU(z) = (1)) Y ()2,

a€2p+2Q

Lemma 2.6. For an admissible series P(z) and w € W, the Weyl twist
PY(2) is admissible.

Proof. Property (P1) follows by applying Lemma 2.3, and property (P2)
follows by applying Lemma 2.5. O
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2.5. The A; case. When Q = Ay, the series W (z) from (2.3) and its Weyl
twist W*(z) by the action of ¢ € Sy from (2.7) are

W(z) := Z 7~ () and W(z) :=— Z 22
i>0 i>0

Lemma 2.7. The series W (z) and W*(z) are the only two admissible series
for the root lattice Ay.
Proof. Assume P(z) = Y., c(i)z" is admissible. For Q = A;, Lemma 2.5
says that property (P2) is equivalent to

| | 1ifj =0,
(2.10) c—1)—c(i+1)=

0 otherwise

for j € Z. Since P(z) satisfies (P1), one has ¢(i) = 0 for either i > 0 or
i < 0. Assume c(i) = 0 for i > 0. By repeatedly applying (2.10) with j > 0,
one has ¢(i) = 0 for ¢« > 0. Then, since ¢(0) = 0, by repeatedly applying
(2.10) with odd j < 0, one has ¢(i) = 0 for even ¢ < 0. Also, since ¢(1) =0,
by applying (2.10) with 7 = 0, one has ¢(—1) = 1. Finally, by repeatedly
applying (2.10) with even j < 0, one has ¢(i) = 1 for odd ¢ < —1. Hence,
P(z) = W(z). Similarly, the case ¢(i) = 0 for i < 0 yields W*(z), hence the
statement. (]

2.6. The key example in the A; case. When Q = As, let a and 8 be
the two simple roots. Then «, 8 and p = a + S are the three positive roots,
and the admissible series W (z) from (2.3) is

W(z) = Z 2~ @it1a Z 5~ (2i+1)B Z L—(2i+1)p

i>0 i>0 i>0
Since p = a + B, a simple computation shows that this expands as
(2.11) W(z)= Y min{m,n}z"2m"2
m,;n>0

Indeed, the coefficient of z~27"*~2n8 here follows from the computation

| {(i,7,k) € 2N+ 1| i + jB + kp = 2ma + 2n} |

=1{(i,j,k) € 2N+ 1| (i + k)a+ (j + k)B = 2ma + 2nf} |

=|[{k€2N+1|k<2m and k < 2n} |

= min{m, n}.

These values are represented in Figure 3. Equivalently, the Kostant partition
function from §2.2 for A, is

k(aa 4+ bp) = 1 + min{a,b} fora,b>0
and vanishes otherwise. Then (2.11) follows from (2.4).
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1

1

FiGURE 4. The nonzero coefficients of the even Weyl line
L,(z) for z = 1y and the powers of z of length at most 8.
Here the three positive roots have length 2 and are marked
with dots.

2.7. More examples in the As case. Infinitely many more examples of
admissible series in the case () = As can be obtained as follows. Let o € W
be the reflection given by o(«) = —a. Then o exchanges § and p. Consider
the Weyl twist

WO‘(Z) _ ZZ(ZiJrl)a 227(21'4’1)5 sz(2i+l)p

>0 >0 >0
= — g min{m,n} z2me2",
m,n>0

Adding appropriate translates of W (z) — W7(z) to W (z) yields infinitely
many admissible series:

Lemma 2.8. For~y € Ay with (7,2p—a) >0 (i.e., v € Za+N>o8+N>qp),
the series - -

W (z) + 22 (W(2) = W7(2))
1s admissible.

Proof. Since both W (z) and W (z) satisfy (P2), one has by linearity

(2.12) ( > (=1t 22w<ﬂ>> (W(z) —W(2)) =0.

weWw

Then the given series satisfies (P2) by linearity. Moreover, the second refor-
mulation of (P1) in Lemma 2.3 clearly holds due to the choice of 7, hence
(P1) holds as well. O

Even more examples can be constructed as follows. For x € W, consider

first the even Weyl line
L(z) = 3 20,

€27
An example is in Figure 4.
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Lemma 2.9. For Q = Ay and x € W, one has

(Z (—1)““’) 22“’(”)) L.(z)=0.

weW

Proof. Write Ly(z) = > copc(7)2”. As in the proof of Lemma 2.5, the
statement is equivalent to

(2.13) ST (=DM e (g + 2w(p)) = 0

weW
for n € 2Q). Expanding, the left-hand side is

cn+2p) —cn+20)+cln—2a)—c(n=2p)+c(n—28) —c(n+2a).
Since ¢(y) = 1 if v € 22(p)Z and ¢(y) = 0 otherwise, at most two of these

six summands are non-zero, and if two summands are non-zero, then they
must have opposite coefficients. Hence (2.13) holds. O

Adding translates of L,(z) to an admissible series yields infinitely many
admissible series:

Lemma 2.10. Let P(z) be an admissible series with coefficients in a com-
mutative ring R. For elements v # 0 in As, c € R, and x € W, the series

P(2) + 2Ly (2)
18 admissible.

Proof. Property (P2) follows by linearity after applying Lemma 2.9. Prop-
erty (P1) follows by Lemma 2.3. O

2.8. More examples for arbitrary (). The construction of Lemma 2.8
can be extended to the case of an arbitrary irreducible root lattice @) of rank
at least 2 as follows. Select a simple root o € AT, and let ¢ € W be the
reflection given by o(a) = —a. Then o permutes the positive roots other
than o [Hum, Lemma B, §10.2], hence o(p) = p — a. This together with the
fact that (a, () + (a,0(¢)) = 0 for ¢ € Q implies
(a,2p —a) = 0.

In particular, 2p — a is a sum of positive roots and is perpendicular to a.
Adding appropriate translates of W(z) — W7(z) to W (z) yields infinitely
many admissible series:

Lemma 2.11. For vy € Q with (v,2p — «) > 0, the series
W(z2) + 227 (W(z) = W9(2))
s admassible.
Proof. The proof of Lemma 2.8 holds verbatim. O
We can now conclude the proof of Theorem 2:

Proof of Theorem 2. Part (i) follows from Lemma 2.7 and part (ii) from
Lemma 2.11. g
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3. AN INVARIANT SERIES

After defining graded Weyl twists of admissible series and Weyl assign-
ments for reduced plumbing trees, we define a g-series and state the main
theorem about its invariance. We conclude with a discussion of the relation

with [GM, Par, Ri].

3.1. Graded Weyl twists. Let P(z) be an admissible series as in §2, and
for € W recall the Weyl twist P*(z) from (2.9). For € W, define the
graded Weyl twist of P(z) as

¢ 2
( S (—1)w) zzw@)) if =0,
weWw
_1 E(w) z2w(p) 1f n = 17
Pre) = 2t
1 ifn=2,
| (P*(2))" if n > 3.

Note that P?(z) for n € {0,1,2} does not depend on P(z), nor on xz. More-
over, for P(z) = 3 co, 120 ¢(@)2z®, expanding the case n > 3 and using the
Weyl twist (2.9) yields

n—2

(3.1) Pi(z)= | (=D > ()" if n > 3.
a€2p+2Q

The assumption (P1) implies that the (n — 2)-power here is well defined.

Remark 3.1. From property (P2), an admissible series P(z) can be inter-
preted as an inverse of the Laurent polynomial Zwew(—l)g(w) 22w(P) and
similarly for the Weyl twists P*(z) with x € W after Lemma 2.6. Hence,
the graded Weyl twist P?(z) can be interpreted as an (n—2)-power of P*(z)
also when n € {0, 1, 2}.

3.2. Weyl assignments. For a reduced plumbing tree I' (as in §1.7) with
framing matrix B and a root lattice @), a Weyl assignment is a map

&V —-w, v &y
such that
(3.2) & =1w if degv < 2,

with 1y being the identity element in W, and such that the values on
vertices across what we call forcing bridges are coordinated by the following
condition (3.3).

First, define a bridge of I' to be a path in I' connecting two vertices, both
of degree at least 3, through a sequence of degree-2 vertices.

Then, define a forcing bridge of I' to be a bridge of I' that can be con-
tracted down to a single vertex by a sequence of the Neumann moves (Ae)
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and (C) from Figure 2. A forcing bridge of I between vertices v and w will
be denoted by I
Finally, for a Weyl assignment &, one requires

(3.3) &y = LT, for every forcing bridge Iy,

where ¢+ € W is as in (2.7), and A7(v,w) is defined as the difference in
numbers of positive eigenvalues

(3.4) Ar(v,w) := 7(B) — 7(B)
with B being the framing matrix of the plumbing tree obtained from I" after
contracting Iy ..
Define
= := {Weyl assignments £}.
One has
E| = [W|" where n := [{v € V(I") : degv > 3}| — |{forcing bridges}|.

3.3. The g-series. Let M be a weakly negative definite plumbed 3-man-
ifold. After a sequence of Neumann moves, one can assume that M is
constructed from a plumbing tree I" which is reduced and weakly negative
definite (see Lemma 1.5). For a root lattice @, select a representative a of a
generalized Spin®-structure

(3.5) acd+2L'®7QC L' ®zQ,

and an admissible series P(z) as in §2, with coefficients in a commutative
ring R. Define

(3.6) Ypa(q) = (_1)|A+|ﬂq%(307tr3)<p,p) Z cr(f) q*§<575>
tea+2BLRQ

where

(3.7) jz I1 [nggv Lv.

H £eE veV (T

Here = is the set of Weyl assignments from §3.2, PY denotes a graded Weyl

twist as in §3.1, the operator [ ], assigns to a series in z the coefficient

of the monomial z% for a € @, and ¢, € ) denotes the v-component of

lel’®,Q=Q"" for ve V(T). One has cp(f) € I?il R.

Remark 3.2. (i) Replacing the admissible series P(z) with a Weyl twist
P"(z) for some w € W, as in (2.9), yields the same series Ypq(q).
Hence, Ypq(q) depends on P(z) only up to Weyl twists.

(i) When the reduced plumbing tree I" has only vertices of degree at most
2 (i.e., I' is a path graph), the series Yp4(q) does not depend on P(z).
This is due to the fact that the graded Weyl twists P do not depend on
P(z) for n < 2, see §3.1. Hence in this case, the series Yp,(¢) coincides
with the series Z(g) from [GM, Par], see §3.5. For an example with T
containing a vertex of degree 3, see §6.
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(iii) The sum in the series is over £ such that £ = a mod 2BL®(Q). As these ¢
are all the representative of the class of a in the quotient space Bg (M)
from (1.3), the series Yp,(q) depends on a at most up to its class in
Bo(M). Moreover, we show in Theorem 5.1 that Yp,(¢) depends on
a only up to its class in the space Bg(M ), which is the quotient of
Bo (M) modulo the action of the Weyl group W.

Lemma 3.3. Since the plumbing tree is assumed to be weakly negative defi-
nite, the powers of q in Yp, (q) are bounded below, and for each power of q
there are only finitely many contributions to Ypq (q). In particular, one has

(3.8) Ypa(q) € qz0tP )<””J>‘§<“’“>|:1’ R((a)).

Proof. This is similar to the argument for the series Z (q) from [GM]. The
sum over £ can be decomposed as a sum over the entries of £ corresponding
to vertices of degree at most 2 and the entries corresponding to vertices
of degree at least 3. For the former ones, there are only finitely many
contributions due to the definition of the graded Weyl twists in §3.1. For
the latter ones, the boundedness of the exponents of ¢ and the finiteness
of the contributions to each power of ¢ follow from the assumption that
the plumbing tree is weakly negative definite. Recall from §1.4 that this
implies that the inverse B~! of the framing matrix is negative definite on
the subspace spanned by the vertices of degree at least 3.

Finally, the exponents of ¢ in (3.8) follow from the fact that for an element
¢ €a+2BL®Q, one has ((,0) € (a,a) + 4Z. O

The Laurent ring in (3.8) can be simplified for () = A;: since the pairing
in A; is always even, one has (¢,¢) € (a,a) + 8Z, hence (3.8) for Q@ = A;
becomes

1
Yralg) € qi®UB=)— R((q).
Here we use that (p, p) = 3 for Q = Aj.
Our main result is:

Theorem 3.4. Any two reduced (not necessarily weakly negative definite)
plumbing trees for M yield the same series Ypq (q).

This statement is the main step towards Theorem 1. We prove it in §5.

3.4. The A; case and Ri’s series. Recall from §2.5 that for Q = A,
there is only one admissible series P(z), up to Weyl twists. The resulting
series Yp, (¢) coincides with the g-series from [Ri].

3.5. Relation with the series Z(gq). Assume that the reduced weakly
negative definite plumbing tree I" has no forcing bridges (e.g., this is the
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case when I' has at most one vertex of degree at least 3). Then for each /,
the coefficient cp(¢) from (3.7) is equal to

(3.9) cr(f) = H <|I;/| Z [P(:fegv(zv)]gv> :

veV(T) xeW

This is due to the fact that in the absence of forcing bridges, the values of
the Weyl assignments on various vertices do not need to be coordinated as
in (3.3); and the fact that for n € {0,1,2}, the graded Weyl twist PZ(z) is
independent of z, and thus

1
(3.10) Pi(z) ==Y Pi(z) forne{0,1,2}.
|W| zeW
Now, consider the case P(z) = W(z) as in (2.3).
Lemma 3.5. For arbitrary n >0 and o € @), one has
W)
— z
w2

zeW

r

2—n
_ dzy,
= v.p.f ...v.p.j{ —1)Hw) Z2w(p) z ¢ —.
|z1]=1 |zr|=1 (Z (=) H 2mizy

weWw k=1

Proof. Here v.p. stands for the principal value (valeur principale in French)
of the integral and is computed as follows. For n € {0, 1,2}, the term

2—n
(3.11) ( > (-1t zQwW)

weW

expands as a finite sum, and the v.p. integral is simply the regular integral.
Hence, for a € @, the right-hand side equals the coefficient of z% in the
expansion of (3.11), and the lemma holds by (3.10) and the definition of the
graded Weyl twist in §3.1. (The values for n = 1,2 are given in (4.2), (4.1).)

For n > 3, applying the Weyl denominator formula (2.6), one sees that
the term (3.11) is singular when 28 = 41 for € AT. In this case, the
term (3.11) admits various series expansions, one in each Weyl chamber.
For a € @, the right-hand side is defined as the average of the coefficients of
z® among these various series expansions. As the various series expansions
coincide with WZ(z) for x € W, the lemma holds. O

It follows that (3.9) can be expressed as a product of v.p. integrals. In
particular, when the plumbing tree I' is reduced weakly negative definite
and has no forcing bridges, the series Yy, (¢) recovers the series Z(g) from

[Par]. And for Q = A1, this equals the series Z(q) from [GPPV, GM].
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4. PROPERTIES OF GRADED WEYL TWISTS

Here we discuss some properties of graded Weyl twists which will be used
in the proof of the invariance of the g-series in §5.

Let P(z) be an admissible series for a root lattice @ as in §2. For z € W,
consider the graded Weyl twist P*(z) as in §3.1 and expand as

Pi(z) =Y camla)z®.
a€e@

In other words, define ¢, ,(a) as the coefficient of 2* in PJ(2). Note that
one has

Cam(a) =0 for a & (n —2)(2p + 2Q).
Ezample 4.1. For n = 2, one has

(4.1) () 1 ifa=0in Q,
. CLL‘ o) =
2 0 otherwise;

and for n = 1, one has

—1)!®) if o = 2w(p) in Q for some w € W,
(4.2) cp1(a) = (=1) ) (p)
0 otherwise.

Recall that for n € {0,1,2}, the graded Weyl twist P¥(z) is independent
of P(z) and z, as confirmed in (4.1) and (4.2).

Lemma 4.2. Forxz €¢ W and n > 1, one has
(DAY (1 e (a4 20(p) = canorfa)  fora€Q.
weW
The case n = 3 follows from Lemma 2.5 and (4.1). The case n = 2 can

be verified directly applying (4.1) and (4.2).

Proof. Select t € W, n > 1, and a € Q). By Lemma 2.4, the statement is
equivalent to

(4.3) Z (_1>£(Lw) Con (@ + 2w (p)) = con—1(c)
weW

where the element ¢ € W is as in (2.7).
To show this, assume first n > 3. Recall that the Weyl twist P*(z) is
admissible by Lemma 2.6, and rewrite property (P2) as

1= (Z (_l)é(w)) ZZLu)(p)) Px(z> _ Z (_I)K(Lw) ZQLw(p)Px(Z)'

weWw weWw
The elements in the sums have been rearranged via the involution w + tw.
Multiplying by P?_,(z) and observing that

n—1(2)P%(2) = Py (2)
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by the definition in §3.1, one has
(4.4) w(2) = Y (=1 ) 2w P (),
weW

The coefficient ¢, ,,—1 () is defined as the coefficient of z® in P?_,(z). Hence
the statement follows from (4.4) by observing that for each w € W, the
coefficient of 2% in

22000) B3 ()

is equal to the coefficient of 22+2%() in P?(z) (since w(p) +ww(p) = 0 in Q).
Finally, for n € {1,2}, the identity (4.4) can be verified directly from the
definition of graded Weyl twists in §3.1, hence the statement. O

Next, we study how the coefficients ¢, (o) vary under Weyl reflections:
Lemma 4.3. For x € W and n > 0, the involution x — 1x yields
Pri()lo= DS MPEE),  foracq.
Equivalently, one has
Cam(a) = (—l)mﬂncmm(—a) for a € Q.
Here, . € W is as in (2.7).

Proof. The case n = 2 is clear, since Py(z) = 1. Similarly, the cases
n € {0,1} follow from the definition of graded Weyl twists in §3.1 and
Lemma 2.4. For n = 3, since P§(z) = P?(z), the statement follows from
the definition (2.9) and Lemma 2.4. Finally, the case n > 4 follows since
P(z) = (P*(2))" 2. O

More generally, one has:
Lemma 4.4. For x,w € W and n > 0, one has
[P (2o = D [PY (D) yy  foraeq.
Equivalently, one has
Com(a@) = (1) 0 (w(e)) for a € Q.

Proof. The statement follows by applying the same argument used for the
previous lemma after replacing the use of Lemma 2.4 there with the fact
that ((wz) = f(w) + £(z) mod 2. O

Finally, one has:
Lemma 4.5. Forx € W and p,q > 1, one has
PI(2)PE(2) = Plyga(2):

Equivalently, one has

Z Cop (@ +B)coq(—B) = caprq2() for a € Q.
B
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Proof. The case when either p = 1 or ¢ = 1 follows from Lemma 4.2, equa-
tion (4.2), and Lemma 2.4. The case p,q > 2 follows by the definition of
the graded Weyl twists in §3.1. The second part of the statement follows by
comparing the coefficients of z% on the two sides, for a € ). Note that the
sum over £ is finite thanks to property (P1) for the admissible series P*(z)
(see Lemma 2.3). O

5. INVARIANCE OF THE ¢-SERIES

Here we first prove the invariance of the series Y p, (¢) with respect to the
action of the Weyl group and then prove Theorem 3.4. We conclude with
the proof of Theorem 1.

Recall the coefficients cr(€) from (3.7).

Theorem 5.1. For{ € § + 2L ®7Q C L' ®7 Q, one has
cr(f) = er(w(¥)) forw e W.

In particular, the series Y p, (q) is invariant by the action of the Weyl group
W, that is, Ypa (q) = Ypuw() (@), for w € W.

Proof. The first part of the statement follows after multiplying the identity
in Lemma 4.4 over all vertices in the reduced plumbing tree I', averaging
over all Weyl assignments, and applying the identity

IT (e =1

veV(T)

Indeed, one has that ZUGV(F) degwv is even, as every edge of I' is incident
to two vertices in I'. Moreover, the last part of the statement follows from
the fact that (¢,¢) = (w(f),w(¢)) for w € W, hence the exponent of ¢ is also
invariant by the action of W. O

We now prove Theorem 3.4:

Proof of Theorem 3.4. Let M be a weakly negative definite plumbed 3-
manifold, and let @ be a root lattice. Select an admissible series P(z)
for Q). We verify that any two reduced plumbing trees for M yield the same
series Yp, (¢) for all representatives a of a generalized Spin®-structure for Q).
Any two reduced plumbing trees for M up to orientation preserving home-
omorphisms are related by a sequence of the Neumann moves from Figure
2 which do not create any reducible vertices [Ri, Prop. 3.4].

For each such move, we argue that the two g-series arising from the two
plumbing trees are equal. As in the proof of Proposition 1.2, we use the
notation B: L < L’ and ¢ for the terms related to the bottom plumbing
tree I, and the notation B,: Lo, < L and 0, for the corresponding terms
related to the top plumbing tree I',. The signatures of B and B, will be
denoted by o and o,, respectively, and the numbers of positive eigenvalues
of B and B, will be denoted by 7w and m,, respectively.



HIGHER RANK SERIES AND ROOT PUZZLES FOR PLUMBED 3-MANIFOLDS 27

Select a representative of a generalized Spin®-structure a for the bottom
plumbing tree. For each move, we start by observing how the factor

(5.1) (_1)|A+|wq§(3a—tr3)<p,p>

in front of the sum in the series changes under the move. Afterwards, we
focus on the sum over the various representatives ¢ € a + 2BL ® @ of
the generalized Spin®-structure. For this, recall from Proposition 1.4 that
the space of generalized Spin®-structures is invariant under the Neumann
moves. However, for each move, the column space of B is isomorphic to
some subspace of the column space of B,, see Remark 1.1. It follows that
for each representative £ of the generalized Spin®-structure for the bottom
tree, there is a corresponding affine space of generalized Spin®-structures for
the top plumbing tree. Thus for each move, we argue that the contribution
of each £ for the bottom plumbing tree equals the sum of the contributions
of the elements in the corresponding affine space for the top plumbing tree.

Step (A—): The Neumann move (A—) from Figure 2. There exists an extra
term in the quadratic form corresponding to B, with respect to the quadratic
form corresponding to B given by
—ajg — x% — :c% + 2zox1 + 2z012 — 22129 = — (0 — 1 — .%'2)2,
where x( is the variable corresponding to the added vertex and z1 and xo
are the variables corresponding to its two adjacent vertices in I',. It follows
that
ogo=0—1 and To = T.

Since tr B, = tr B — 3, one has 30, — tr B, = 30 — tr B. We conclude that
the factor (5.1) in front of the sum in the series is invariant under this move.

Next, we consider the sum in the series. Recall the function R from (1.6)
with € = —:

R:L'®zQ — L, ®zQ, (a1,a2) = (a1,0,az).

Here the subtuple a; corresponds to the vertices of I' consisting of the vertex
labeled by m; and all vertices on its left. The subtuple as corresponds to
the vertices of I' consisting of the vertex labeled by mso and all vertices
on its right. The 0 entry corresponds to the added vertex in I's. (See
Remark 1.3 about the determination of left and right parts of the trees.)
For a € § + 2L' ®7 Q, define a, := R(a) € §, + 2L, ®7 Q.

Since I'; does not have a new vertex of degree > 3, nor has it a new
forcing bridge, the top and bottom plumbing trees have isomorphic sets of
Weyl assignments.

The added vertex in I'; has degree 2. From (4.1), we deduce that for
ly € ao + 2B.Lo ®7 Q, one has cp,(¢;,) = 0 when the component of ¢,
corresponding to the added vertex is non-zero. Hence, we can restrict the
sum in the series for I'; over only those ¢, which are of type ¢, = R(¢) for
some £ € a+2BL®7Q. As R is injective, it will be enough to verify that the
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contribution of £ € a4+ 2BL ®z @ in the series for I' equals the contribution
of R(¢) in the series for T's.

From (4.1), one has cp,(R(¢)) = cp(f). Moreover, a direct computation
shows that

B—1£ = (hla h?) = BO_IR(E) = (hla hOa h2)

for some hg. (Specifically, hg is the sum of the entry of hy and the entry
of hy corresponding to the two vertices adjacent to the added vertex in
I's. However, the explicit expression of hy will not be needed below.) This
implies that writing ¢ = (¢1, ¢2), one has

(5.2) (R(£),R(0)) = (61,0,62)t(h1, ho, he) = (€, £).
We conclude that
(53) er(€) g5 = er (R(0)) 5 FOROD,

Hence the contribution of ¢ in the series for I' equals the contribution of
R(?) in the series for I';. This implies the statement for this move.

Step (A+): The Neumann move (A+) from Figure 2. In this case, one has
0o =0+1, To=1+4m, 30, —tr B, = 30 — tr B.

We conclude that the factor (5.1) in front of the sum in the series for I'; has
an extra factor (—1)27.

Next, we use the function R from (1.6) this time with € = +:
R: L ®ZQ—>LZj ®7 Q, (al,a2)|—>(a1,0,—a2).

For a € 6 + 2L’ ®7 Q, define a, := R(a) € o + 2L, ®7 Q.

As for the previous move, the sets of Weyl assignments for the two plumb-
ing trees are isomorphic. The natural isomorphism is defined as follows. For
a Weyl assignment & for the bottom plumbing tree, define a Weyl assign-
ment & for the top plumbing tree such that for a vertex v with degv > 3,
one has

(5.4) TR { & if v is on the left of the added vertex,

t&, if v is on the right of the added vertex.

Here, ¢ € W is as in (2.7). Since the added vertex has degree 2, the value of
& at the added vertex is 1y, as determined by (3.2).

Note that when the added vertex is on a forcing bridge I, ,,, the definition
of & via (5.4) is compatible with the condition (3.3), since

Amo(v,w) = An(v,w) + 1

where Ar(v,w) and Ans(v,w) are the differences in numbers of positive
eigenvalues obtained from the contraction of the bridge I',,, in I" and I,
respectively, as in (3.4).
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As for the previous move, we can restrict the sum in the series for I', over
only those ¢, which are of type ¢, = R(¢) for some ¢ € a + 2BL Q7 Q. In
this case, we have

(5.5) er(f) = (=) ler, (R(0)).
This follows from Lemma 4.3, the definition of &, and the fact that
(5.6) I vier=-1

’UeV2(Fo)

where V5(I',) is the set of all vertices of I', on the right of the added vertex.
Indeed, one has that ZUGVQ (o) degwv is odd, since every edge on the right of

the added vertex in I'; is incident to two vertices in Va(I's) with the exception
of the edge incident to the added vertex, which is incident to only one vertex
in V5(T',). The factor (—1)2" in (5.5) matches the extra contribution to
the factor (5.1) in front of the sum in the series for I';. That is, we have

(=13 Tep(6) = (=14 ™er, (R(0)),
A direct computation shows that
B7Y = (hy,hy) = B;'R() = (h1,ho,—ho)

for some hg. (Specifically, hgy is minus the sum of the entry of h; and the
entry of —hso corresponding to the two vertices adjacent to the added vertex
in I's; however, the formula for hy will not be needed below.) This implies
that
(57) <R(€)7 R(€)> = (617 07 _£2)t(hla hOa _h’2) = <£7 €>

We conclude that
(58)  (~1)ATer(0) g RO = (—1)/7 e (R() S RORO),

Hence the contribution of ¢ in the series for I' equals the contribution of
R({) in the series for T's. Since R is injective, the statement for this move
follows.

Step (B—): The Neumann move (B—) from Figure 2. In this case, one has
0o =0 — 1, Mo = T, 30, —trBo = -1+ 30 —tr B.
We conclude that the factor (5.1) in front of the sum in the series for ', has
an extra factor q_%<p7p>.
For a choice of w € W, consider the function:
(5.9) Ry: L'®zQ — L, ®zQ, (ag,a1) — (ag, a1 + 2w(p), —2w(p))

with entry a; corresponding to the vertex of I' labeled by m;, subtuple ay
corresponding to all other vertices of I', and entry —2w(p) on the right-hand
side corresponding to the added vertex in I'y. Note that the function R from
(1.7) with e = — is R = Ry, with w = 1. For a € 0 + 2L ®z Q, define
ao := R(a) € 0o + 2L, ®7 Q.
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The added vertex in I'; has degree 1. From (4.2), we deduce that for
Uy € ao + 2BoLo ®z Q, one has cr (lo) = 0 when the component of ¢,
corresponding to the added vertex is not in the orbit —2W (p). Hence, we
can restrict the sum in the series for I', over only those ¢, which are of type
ly = Ry ({) for some ¢ € a + 2BL ®z  and some w € W. Note that for
{e€a+2BL®yzQ and w € W, one indeed has

Ry(¢) € a4+ 2B, Lo ®7 Q.

Let n be the degree of the vertex in I', adjacent to the added vertex.
Then the degree of the corresponding vertex in I' is n — 1. The assumption
that this Neumann move does not create a reducible vertex implies n # 3.
It follows that I'y; does not have a new vertex of degree at least 3, nor has
it a new forcing bridge, hence the top and bottom plumbing trees have
isomorphic sets of Weyl assignments; denote these as =.

For ¢ € a4 2BL ®z Q, write £ = (¢4,£1). Select £ € Z, and let z € W
be the value of £ at the vertex in I', adjacent to the added vertex. From
Lemma 4.2, one has

C:D,n—l(‘gl) = ‘A+| Z Catn €1+2w(p))
(5.10) weW
= 3" eyt (—2w(p)) o (1 + 20(p)) -
weW

The second identity follows from equation (4.2) and Lemma 2.4, which to-
gether imply

1y 1 (—2w(p)) = (—1)Z(Lw) = (—1)|A+‘(—1)é(w) for w e W.

Multiplying both sides of (5.10) by the contributions corresponding to the
remaining vertices of I'; one has

(5.11) 11 [Pﬁégv } => 1I [Pfggv }Rw(m
veV(T) weW veV (Ty)

Averaging over all £ € =, one has

(5.12) cr(0) = > er (Ru(0)).

weWw

Next, we consider the powers of q. For w € W, a direct computation
shows that

B Y= (hyh1) = Bi'Ry,(£) = (hy, b1, hi + 2w(p)).
This implies that
(Ru(0), Ruy(€)) = (£, 1 4 2w(p), —2w(p))" (hy, 1, ha + 2w(p))
= ((,€) = 4p, p).
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Thus from (5.12), we have

(5.13) er(0) g 580 = gm2len) Z er, (R (£)) g~ 8 Bw (@ Ru(@)
weW

The factor q_%<p’p> on the right-hand side matches the extra contribution to
the factor (5.1) in front of the sum in the series for I';. We conclude that
the contribution of ¢ in the series for I' equals the sum over w € W of the
contributions of Ry, (¢) in the series for I's. Since the maps R,, for w € W
are injective, the statement for this move follows.

Step (B+): The Neumann move (B+) from Figure 2. In this case, one has
oo, =1+ o0, T, =14m, 30, —trB, =1+ 30 — tr B.

We conclude that the factor (5.1) in front of the sum in the series for I', has

an extra factor (—1)|A+\q%</’vp>,
For a choice of w € W, consider the function

(5.14) Ry: L' ®7,Q — L. ®7Q, (ag,a1) = (ag, a1 + 2w(p), 2w(p)).

For a € 6 + 2L ®z Q, define a, := R(a) € §o + 2L Rz Q where R = Ry,
with w = 1y.

As with the previous move, we can restrict the sum in the series for I',
over only those ¢, which are of type ¢, = Ry, (¢) for some ¢ € a + 2BL ®z Q
and some w € W. Also, let n be the degree of the vertex in I's adjacent
to the added vertex. As with the previous move, the assumption that this
Neumann move does not create a reducible vertex implies n # 3, and thus
there are no new forcing bridges. Hence the sets of Weyl assignments for
the two plumbing trees are isomorphic.

For ¢ € a4+ 2BL ®z Q, write £ = (¢4,£1). Select £ € Z, and let z € W
be the value of £ at the vertex in I', adjacent to the added vertex. From
Lemma 4.2, one has

Cam—1(01) = lAﬂ Z an(€1+2w( )
(5.15) i
DTN e1y 1 Qu(p)) eam (1 + 2w(p)).
weW

The second identity follows from equation (4.2). Multiplying both sides of
(5.15) by the contributions corresponding to the remaining vertices of I, one
has

v + v
616) [ [P, =0T T [P,
veV (D) weW veV (Ty) v
Averaging over all £ € Z, one has

(5.17) er(f) = (1213 ep, (Ru(0)

weW
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For w € W, a direct computation shows that
B = (hy,l) =  By'Ru(6) = (hy, hi, 2w(p) = h).
This implies that

(Ru(0), Ru(0)) = (g, 1+ 2w(p), 2w(p))" (hy, b1, 2w(p) — )
= ((,0) +4(p, p).

Thus from (5.17), we have

(5.18)

(fl)lm\wCF([) q—§<f,€> — (71)|A+\7r0q%<pyp) Z CFO(Rw(Z))q_é<Rw(f)7Rw(€)>'
weW

The factor q%@’p) on the right-hand side matches the extra contribution to ¢
in the factor (5.1) in front of the sum in the series for I's. We conclude that
the contribution of 7 in the series for I' equals the sum over w € W of the
contributions of R,,(¢) in the series for I';. Since the maps R,, for w € W
are injective, the statement for this move follows.

Step (C): The Neumann move (C) from Figure 2. In this case, one has
0o = 0, o =14m, 30, —tr B, = 30 — tr B.

We conclude that the factor (5.1) in front of the sum in the series for I'; has

an extra factor (—1)I271.
Recall the function Rg with 8 € @ from (1.8):

R,B: L/ ®Z Q — Lé ®Z Q7 (athaO)ab) = (aﬁ)ao + /850757 _ab)

where the entry ag corresponds to the vertex in I' labelled by mq + mo, the
entries ag + B, 0, and 8 correspond to the vertices in I', labelled by mq,
0, and mg, respectively, and the subtuples ay and a, correspond to all the
vertices in I'y; on their left and right, respectively.

For a € § + 2L' ®7 Q, define a, € d, + 2L, ®7 Q as

{ Ry,(a) if deg(vi) = deg(v2) mod 2,
ao ==

Ro(a)  otherwise.

This is as in (1.9).

As the vertex labelled by 0 in ', has degree 2, from (4.1) we deduce that
for 45 € ao + 2BoL, ®7 Q, one has cr ({,) = 0 when ¢, has a non-zero
component corresponding to the vertex of I', labelled by 0. Hence, we can
restrict the sum in the series for I', over only those £, which are of type
Uy = Rg({) for some ¢ € a + 2BL ®z ) and some € Q. Note that for
fe€a+2BL®yQ and B € Q, one has

RIB(E) € ao + 2B0Lo Rz Q
if and only if 5 € 5y + 2Q with 5y defined as in (1.9).
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Select a Weyl assignment £ for I', and define a Weyl assignment &, for I',
such that, for a vertex v with degv > 3, one has

v &, if v is on the left of vy,
or v &, if v is on the right of vs.

Here ¢ is as in (2.7), and v; and vy are the vertices labelled by m; and mg
in I',. Moreover, define

§o(v1) :=E&(vo)  and  &o(va) := 1&(vo)

where v is the vertex labelled by mi + mo in I'. The value of & at the
vertex labelled by 0 in I's is 1y, as determined by (3.2). The map & — &
is the natural isomorphism of the sets of Weyl assignments for I' and T',.

Let p and g be the degrees of the vertices v; and vy in I'y, respectively.
Then the degree of the vertex vy in I' is p+¢—2. Recall that we are assuming
that the Neumann move does not create a new reducible vertex. Moreover,
when p,q > 3, the tree I'; has one more forcing bridge with respect to I,
and the definition of &, is compatible with the condition (3.3).

For ¢ € a4 2BL ®z Q, write £ = ({4,%o,4,). Let x := &(vg) € W. From
Lemma 4.5, one has

Czptq—2(lo) = Z Czp (bo+ B) Cayg (—B) -
BEB+2Q
Applying Lemma 4.3, one has
(5.19) Caprg-2(fo) = (DT ST cny (fo+ B) cuag (8).
BEB+2Q

Let V;,(I's) be the set of all vertices of I's on the right of the vertex labelled
by mse. Applying Lemma 4.3 to all contributions corresponding to vertices
in V,(T',) and using that g + > r.)degv is odd (this is as in (5.6)), one
has

(1AM, (8) T cevesv(to)

veV, (T's)

veV, (T

= (_1)|A+‘ch,q (5) H CLgv,degv(_gv)'

’UEVb (Fo)

Multiplying both sides of (5.19) by the contributions corresponding to the
remaining vertices, using (4.1) and the last identity, one has

v At 50 )
(520) H [P(?egv( )i|£ l | Z H [ degilj) Zv ]R 0 :
veV (D) v BEBo+2Q veV (T'o) pr
Averaging over all £ € =, one has

(5.21) cr(0) = (12T ST ep (Rg(0)).
BeBo+2Q



34 A.H. MOORE AND N. TARASCA

The factor (—1)!2"| on the right-hand side matches the extra contribution
to the factor (5.1) in front of the sum in the series for I's.
For 8 € @), a direct computation shows that

B~ = (hg ho,hy) = B 'Rs(0) = (hy, ho, ho, —ho, —hy)
for some h{, € Q. This implies that

(5.22) (Rg(€), Rs(€)) = (&, Lo+ B, 0,8, ~6,)" (hy, ho, hy, —ho, —Ty) = (£, £).

We conclude that
(5.23)

1 To -1 w w
(DA Tep(0)g 300 = (1A ST e (R ()R RO R
BEPo+2Q

Hence the contribution of £ in the series for I' equals the sum over 8 € Sy+2Q)
of the contributions of Rg(¢) in the series for I's. Since the maps Rj are
injective for all 3, the statement for this move follows.

This concludes the proof. O

Finally, we prove:

Proof of Theorem 1. Part (i) follows from Theorem 3.4 and [Neu] (see §1.5);
part (ii) follows from Theorem 5.1. O

6. BRIESKORN SPHERES

Here we prove Corollary 2 regarding the computation of the invariant
series for a Brieskorn homology sphere (b1, be, b3). For this 3-manifold, the
series 7 (¢) was first computed for @ = A; in [GM] and then for arbitrary
@ in [Par]. Here we show how these computations can be extended more
generally to the case of the series Yp, (q).

For integers by, b, b3, the Brieskorn sphere M = ¥(by, b, b3) is the link of
the singularity zll)1 + 232 + z§3 = 0, and it is a homology sphere if and only
if b1, be, b3 are pairwise coprime. If any of the by, bo, b3 is equal to 1, then
(b1, ba, b3) is homeomorphic to the 3-sphere. Hence, we will assume that
b1, by, by are pairwise coprime and 2 < by < by < bs.

The Brieskorn homology sphere M = ¥ (by, by, bs) is realized as a negative
definite plumbed manifold with plumbing tree I' defined as follows. Select
integers b < 0 and ay, as, ag > 0 such that

3
Z %4 _
b, b1b2b3

Then I is a star-shaped tree consisting of a central vertex of degree 3 labelled
by b and three legs consisting of vertices labelled by —k{,..., —kg, , for i =
1,2, 3, such that for each leg, the labels are ordered starting from the central
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vertex and .
PR i
Qg ki
2 1
The total number of vertices is s = 1 4 s1 + s9 + s3. Since I' is negative
definite, one has # = 0 and ¢ = —s. As I has only one vertex of degree > 3,

the set of Weyl assignments from §3.2 is =& = W.
Select a root lattice @), and choose an order of the basis of L' ®7 Q = Q°
so that for f € QQ° one writes

(6.1) f="(fo, fr, fa, f5,--..)

with fp corresponding to the vertex of I' of degree 3 and f1, fa, f3 to the
three vertices of degree 1.

Since Hi(M;@Q) = 0, one has that a = ¢ from (1.2) is the unique gener-
alized Spin®-structure. Thisis 6 = (—1,1,1,1,0...,0) ® 2p.

Proof of Corollary 2. For an admissible series P(z) = > cqc(a)z®, the
series from (3.6) is

(6.2) Yp(q) = g 3G+ B) (o) Zcr(f) g5

where the sum is over f € § + 2BL ® Q C @°. Recall the definition of
the coefficients cr(f) in (3.7) in terms of the graded Weyl twists from §3.1.
Since I is a star-shaped tree with three legs, the sum over f in (6.2) can be
restricted to those f which are of the form

f = (a,2w1(p), 2wa(p), 2ws(p),0,...,0) € @°

with a € —2p 4+ 2Q and wy, wo, w3 € W
as cr(f) vanishes otherwise. For a fixed z € W = E, applylng (3.1) with
n = 3, one has that the contribution of fy = a is (—1)!®@¢(z~(a)), and

(
applying (4.2), the contribution of f; = 2w;(p) for i = 1,2,3 is (—1)%ws,
Hence one has

1

er(f) = o S (- ()
|W‘ zeW

Thus (6.2) can be rewritten as

Yp(q) = g 2Gs+trB)e) Z‘ Z z(mwlwzwg)c(fla)qfé<f,f>
xEW

Since £(z) = £(z~!), one has £(zwiwow3) = £(z~ wiz ™ 'wez ™ ws) mod 2.
Thus by making use of the symmetry f + z~!f and the fact that (f, f) =
(x=1f, 271 f), the series becomes

Yp(q) =q —3Bs+tr B)(p,p )Z(_l)f(wlwzws)c(a) —s{ff),
f
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To further simplify it, let us analyze the exponents of ¢. From the defini-
tion of the pairing of L' ®z Q = @Q® in (1.1), one has

3
(6.3) (f.f) = By {a,a) +2 > ByMa, 2wi(p +ZB (2w;(p), 2w;(p))
=1

1,5=1

where the entries of B~! are indexed by 4,j = 0,...,s — 1, compatibly with
the indices of f in (6.1). In particular, only the top 4 x 4 diagonal block of
B~!is required here. A direct computation in [GM] shows that the related
entries of B~! are as follows

bybob
By = —bibabs, Bi;l:—lbzi” for i,7 = 1,2,3 with i # j,
ib;
bibab
By'=-—= and Bi'=-h for i =1,2,3,
()

where h; > 0 is (up to a sign) the determinant of the framing matrix for the
plumbing graph obtained from I' by deleting the terminal vertex on the ith
leg (the exact value of h; will not be needed in the following). Substituting
in (6.3) yields

(f, f) = —bibabs3

2
+4(p,p (bﬂ)gng—Zh)

3
2w;(p)
LT

Hence, we can rewrite the series as

(64 = P e
where
3
(6.5) C .= (38 + tr B + b1bobs Z Z hz> > cQ
=1 1=1
and
b b b ’
e(f) := 12 Z € Q.
For d := b1bsbs and w := w3, one has
. 2
e(f) = 3d do + w(nz,y)
where z := wlwy, y := wlwg, and 7, is as in (0.1). Decomposing

the sum over f as a sum over « and w;, for i = 1,2,3, the series (6.4) is
rearranged as in the statement. O
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