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Abstract. A totally oriented Klein graph is a trivalent spatial graph in the 3-sphere with a 3-coloring of its
edges and an orientation on each bicolored link. A totally oriented Klein foam is a 3-colored 2-complex in the

4-ball whose boundary is a Klein foam and whose bicolored surfaces are oriented. We extend Gille-Robert’s
signature for 3-Hamiltonian Klein graphs to all totally oriented Klein graphs and develop an analogy of

Murasugi’s bounds relating the signature, slice genus and unknotting number of knots. In particular, we

show that the signature of a totally oriented Klein graph produces a lower bound on the negative orbifold
Euler characteristic of certain totally oriented Klein foams bounded by Γ. When Γ is abstractly planar,

these negative Euler characteristics, in turn, produce a lower bound on a certain natural unknotting number

for Γ. Mutatis mutandi, we produce lower bounds on the corresponding Gordian distance between two
totally oriented Klein graphs that can be related by a sequence of crossing changes. We also give examples

of θ-curves for which our lower bounds on unknotting number improve on previously known bounds.

1. Introduction

For a knot K ⊂ S3, the familiar chain of inequalities

1

2
|σ(K)| ≤ g4(K) ≤ u(K)

between the signature σ(K), slice genus g4(K), and unknotting number u(K) [Mur65, Theorem 9.1 and
Theorem 10.1] can be rewritten as

|σ(K)| ≤ 1− χ4(K) ≤ 2u(K).

Here χ4(K) is the slice Euler characteristic, the maximal Euler characteristic of a properly embedded,
orientable smooth surface F ⊂ B4 without sphere components bounded by K. Considering the knot K as
the branch locus for a branched double cover of S3, and the surface F as a branch locus for a branched

double cover of B4, we can consider the orbifold Euler characteristic χorb(F ) =
1

2
χ(F ) so that χorb

4 (K) is

the maximum of χorb(F ) among such surfaces F . The division by 2 in the orbifold Euler characteristic is
due to the degree of the cover. Now our initial inequalities takes the form:

(1)
1

2
|σ(K)| ≤ 1

2
− χorb

4 (K) ≤ u(K).

The Gordian distance d(K1,K2) between two knots is the minimal number of crossing changes needed to
convert K1 into K2. Essentially the same proof as for Inequality (1) shows that

(2)
1

2
|σ(K1)− σ(K2)| ≤

1

2
− χorb

4 (K1#−mK2) ≤ d(K1,K2).

Indeed, u(K) is just the Gordian distance of K with the unknot.
Both inequalities (1) and (2) extend to the setting of totally oriented Klein graphs, which are trivalent

spatial graphs with extra coloring and orientation information. The simplest Klein graph is the θ-curve with
edge colorings. In a sequence of crossing changes of such a graph it is sensible to keep track of whether a
crossing change occurs between distinct edges, a mixed-color crossing change, or between an edge and itself,
a same-color crossing change. For a sequence of crossing changes, we let m denote the number of mixed-color
crossing changes and s the number of same-color crossing changes. The Klein unknotting number u I(θ) is
the minimum of m/2 + s over all crossing change sequences converting θ to the unknot. We prove:
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Corollary 1.1. If θ is a theta curve in S3, then

1

4
|σ(θ)| ≤ 1

4
− χorb

4 (θ) ≤ u I(θ).

The statement for theta curves is a corollary of Theorem 4.1.
Recently, the quest to understand unknotting numbers and sequences of crossing changes for θ-curves has

been provoked by potential biological applications [BO18,OSB18,BBM+22]. In Section 5, we give examples
demonstrating that the bounds of Corollary 1.1 improve previous bounds.

1.1. Totally orientable Klein graphs. More generally, we develop analogous bounds for the class of
totally oriented Klein graphs.

A spatial graph is a smooth embedding in S3 of a compact graph, allowing S1 components, considered
up to smooth isotopy. A trivalent spatial graph is a web. Without the embedding into S3, a web is also
known as a cubic graph. A Klein coloring or Tait coloring of a web is an assignment of a color r, g, b to each
edge or loop so that edges of all three colors are incident to each vertex of the web. A web equipped with
a Klein coloring is a Klein graph. Klein colorings arise naturally when considering quotients of the Klein
group acting on 3-manifolds.

Given a Klein graph Γ, each unordered pair {i, j} ⊂ {r, g, b} defines the bicolored link Γij comprised of
only the edges and loops colored i or j. A Klein graph is 3-Hamiltonian if each bicolored link is actually a
knot; signatures for 3-Hamiltonian Klein graphs were developed by Gille and Robert [GR18]. In the process
of extending their work to relate signature, unknotting number, and χorb

4 , we found that it was possible to
drop the 3-Hamiltonian condition.

This enables an analogue to the classical extension of Inequality (1) to links. Effectively we obtain that
for two Klein graphs related by crossing changes, the difference in their signatures gives a lower bound on
an Euler characteristic of a certain type of cobordism between them. This, in turn, gives a lower bound on
the Klein Gordian distance between them, though with adjustments based on easily calculable invariants of
the two graphs.

Theorem 4.1. Suppose that
# –

Γ1 and
# –

Γ2 are totally oriented Klein graphs that are related by a sequence of
crossing changes. Set V := |V (Γ1)| = |V (Γ2)| and µ := µ(Γ1) = µ(Γ2). Then:

|σ( # –

Γ1)− σ(
# –

Γ2)| − β(
# –

Γ1)− β(
# –

Γ2) + 4µ− 12 ≤ 5− 4χorb
4 (

# –

Γ1#3 −m
# –

Γ2)− 2V

≤ −4χorb
4 (

# –

Γ1,
# –

Γ2; s)− 2V

≤ 4d I(
# –

Γ1,
# –

Γ2)

where
# –

Γ1#3 −m
# –

Γ2 is any vertex connected sum of
# –

Γ1 and −m
# –

Γ2 compatible with the total orientations.

Here β is the nullity, µ is the sum of the number of components of the bicolored links, and d Iis the Klein
Gordian distance (akin to the Klein unknotting number). To obtain Theorem 4.1 we must impose the extra
structure of a total orientation on our Klein graphs, which is a choice of orientation on each bicolored link.
We denote a totally oriented Klein graph by

#–

Γ.
The additional structure of a total orientation enables us to define in Section 2.4 for any totally oriented

Klein graph
#–

Γ signatures ζ(Γ) and σ(
#–

Γ). These are analogous to the Murasugi signature of an unoriented

link and the signature of an oriented link, respectively, and extending [GR18]. The signature σ(
#–

Γ) derives
from a Z2 × Z2 covering of B4 branched over a properly embedded colored 2-complex F in B4 called a
Klein foam for which Γ = ∂F in S3 = ∂B4. (See Definition 2.6 for the specifics of the foam.) The terms

χorb
4 (

# –

Γ1#3−m
# –

Γ2) and χorb
4 (

# –

Γ1,
# –

Γ2; s) appearing in Theorem 4.1 both refer to slice orbifold characteristics of

two types of totally oriented Klein foams relating
# –

Γ1 and
# –

Γ2. Here, χorb
4 (

# –

Γ1#3 −m
# –

Γ2) is a maximum taken

over all of orientable slice foams bounding the vertex sum
# –

Γ1#3 − m
# –

Γ2, whereas χorb
4 (

# –

Γ1,
# –

Γ2; s) calculates
the seamed cobordism characteristic of a restricted type of foam where the singular set is a 1-manifold of
which each edge runs from

# –

Γ1 to
# –

Γ2 (see Definitions 2.8 and 2.13).
In general the singular set of a Klein foam could have interior vertices. A total orientation on a Klein

foam bestows an orientation on these vertices. A signed count of these vertices, the signed seam vertex count
2



sv, can be determined from the totally oriented Klein graph that is the boundary of the foam. This is an
invariant of totally oriented Klein graphs, as we discuss in Section 3.2.

Theorem 4.3. For a totally oriented Klein graph
#–

Γ ⊂ S3, we have

|σ( #–

Γ)| ≤ 3− |V (Γ)|+ 2|sv( #–

Γ)| − 4χorb
4 (

#–

Γ)− 2(µ(Γ)− 3) + β(
#–

Γ).

In Section 4.2, we turn our attention to the construction of the totally oriented seamed foamy cobordisms
that are required for the third inequality in Theorem 4.1. As it will turn out, such objects naturally arise
by stacking cobordisms resulting from crossing changes of totally oriented Klein graphs.

Theorem 4.9. Suppose there is a sequence of s same-colored crossing changes and m mixed-colored crossing
changes between totally oriented Klein graphs

# –

Γ1 and
# –

Γ2. Then there is a totally orientable seamed foamy
cobordism

#–

F between
# –

Γ1 and
# –

Γ2 without bicolored spheres with

χorb(
#–

F ) = −|V (
# –

Γ1)|/2− (s+m/2).

Consequently, the seamed cobordism characteristic provides a lower bound on Klein Gordian distance,
providing the last inequality in Theorem 4.1:

Corollary 1.2. If the Klein Gordian distance between two Klein graphs Γ1 and Γ2 is d I(Γ1,Γ2) then

−χorb
4 (Γ1,Γ2; s) ≤ d I(Γ1,Γ2) +

1

2
|V (Γ1)|.

1.2. Organization. Section 2 collects all major definitions, including Klein graphs and unknotting numbers
in 2.1, orientations and foams in 2.2, orbifold Euler characteristics in 2.3, and signatures in 2.4. In Section
3, we study the structure of total orientatons on Klein graphs, addressing foams with seam vertices in 3.1,
orientations in 3.2, and cobordisms in 3.3. In Section 4 we prove our main results: Theorem 4.1, Theorem 4.3
and Theorem 4.9. In Section 5 we present several examples; in 5.1 we give improved bounds on unknotting
number for a family of theta curves, and in 5.2 we compare the bounds of Theorem 4.1 with the notion of
strong signature. Lastly, an appendix aggregates the behavior of various invariants under reversal, mirroring
and connected sum for convenience.

2. Definitions

2.1. Klein graphs and unknotting numbers.

Definition 2.1 (Klein graphs). A Klein graph Γ is a finite trivalent graph properly embedded in S3 with
a 3-coloring: each edge is colored either red, blue, green, each vertex of the graph is incident to edges of all
three colors, and the graph contains all three colors. We denote red, blue, green by r, b, g, respectively, and
often write i, j, k for arbitrary distinct colors in {r, g, b}. The name arises from the fact that for a given Klein
graph there is a regular orbifold cover of S3 with branch set the Klein graph and with deck group the Klein
group Z/2Z× Z/2Z. A Klein graph is 3-Hamiltonian if for any two distinct colors the union of all edges of
those colors is a single cycle. (Observe that a 3-Hamiltonian Klein graph is connected.) Klein graphs may
have ‘knot components,’ i.e. components without vertices. We will assume throughout that Klein graphs
are smoothly embedded (except at vertices) and work with surfaces up to diffeomorphism. Throughout, we
let |V (Γ)| denote the number of vertices of Γ. The number of edges of Γ is equal to 3|V (Γ)|/2 and so the
Euler characteristic χ(Γ) = −|V (Γ)|/2.

Definition 2.2 (Bicolored links, component count). Suppose Γ is a Klein graph. For each color i, let Γi be
the union of the edges colored i. For each pair of distinct colors i, j, the bicolored link Γij is (the closure of)
the union Γi ∪ Γj . Observe that Γ is 3-Hamiltonian if and only if each bicolored link is a knot.

Define the component count µ(L) of a link L to be its number of components and the component count
µ(Γ) of a Klein graph Γ to be the total number of components of its bicolored links. Hence µ(Γ) =
µ(Γrb) + µ(Γbg) + µ(Γrg).

Definition 2.3 (Crossing changes). A crossing change on a Klein graph can occur either between edges
of the same color or between two distinct colors. We call these types of crossing changes respectively a
same-color crossing change and a mixed-color crossing change, or more simply a same crossing change and
a mixed crossing change. For a sequence of crossing changes on a Klein graph, we let s denote the number of
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same crossing changes and m the number of mixed crossing changes. The Klein Gordian distance d I(Γ1,Γ2)
between two Klein graphs is the minimum of s +m/2 over all sequences of crossing changes converting Γ1

into Γ2, or ∞ if there is no such sequence.
The Klein unknotting number u I(Γ) of a Klein graph Γ is d I(Γ, U) where U is a Klein graph embedded

in a 2-sphere in S3. Of course, the number u I(Γ) is finite if and only if Γ is abstractly planar. (If Γ is
abstractly planar, then by [Mas69], up to isotopy in S3, there is a unique such U .)

Definition 2.4 (Connected sums). Let Γ1 and Γ2 be two Klein graphs in distinct copies of S3.
An order 2 connected sum or edge connected sum Γ1#2Γ2 is obtained as follows. Choose a point in the

interior an edge of each graph of the same color and delete the interior of a closed ball about each point
meeting its graph in an arc in the interior of its edge. Glue together the remnants by an orientation reversing
homeomorphism of the resulting two S2 boundary components so that the pairs of points of Γ1 and Γ2 in
those spheres match up. The result Γ1#2Γ2 is again a Klein graph. Note that the result depends on which
edges contain the points and how the pairs of points in the identified spheres match up.

An order 3 connected sum or vertex connected sum Γ1#3Γ2 is obtained similarly: Here we choose a vertex
of each graph and delete the interior of a closed ball about each of these vertices meeting its graph in three
proper subarcs of the edges meeting that vertex. Now glue together the remnants by an orientation reversing
homeomorphism of the resulting two S2 boundary components so that the triples of points of Γ1 and Γ2 in
those spheres match up according to their colors. The result Γ1#3Γ2 is again a Klein graph. Note that the
result depends only on which vertices are chosen [Wol87].

In Section 2.2 we introduce a notion of total orientation on a Klein graph. When two totally oriented
Klein graphs have total orientations that match on a pair of edges or are opposite on a pair of vertices, these
connected sum operations may be performed along the pair in a manner respecting the total orientations in
the obvious way to confer a total orientation on the resulting sum.

2.2. Orientations and Foams. Here we give a first pass at defining a kind of orientation for Klein graphs
and foams that will enable an Euler characteristic count in Definition 2.13 that is analogous to the slice
genus of an oriented link. In Section 3 we more fully develop this orientation and its implications.

Definition 2.5 (Klein graph: Total orientation, double orientation). A total orientation on a Klein graph Γ
is a choice of orientation on each of its bicolored links. A total orientation on Γ induces a double orientation
on each of its edges; that is, an i-colored edge inherits an ij-orientation from the orientation on Γij and an
ik-orientation from the orientation on Γik. If the ij- and ik-orientations on an i-edge are coherent, we say
the doubly oriented edge has a parallel double orientation and its sign is +. Otherwise the doubly oriented
edge has an antiparallel double orientation and its sign is −.

We denote mirroring and reversal by m(Γ) and −Γ, respectively, and for emphasis, sometimes indicate

totally oriented objects with an arrow, e.g. (
#–

Γ).

Definition 2.6 (Foams). A foam (with boundary) is a properly embedded smooth two-dimensional CW-
complex F in a four manifold (here B4 or S3 × I) in which every point in the interior or the boundary is
a regular point or a singular point, meaning it has a neighborhood diffeomorphic to one of the pictures in
Figure 1. The singular points s(F ) form a 1–complex, called the seam points. Interior vertices of s(F ) are
called seam vertices. (The boundary of s(F ) is the collection of univalent vertices of s(F ), and these are
the vertices of the trivalent graph ∂F .) The facets of a foam are the connected components of F − s(F ),
consisting of sets of regular points, and are smooth surfaces.

A Klein foam (with boundary) is a foam with a 3-coloring whose boundary is a union of Klein graphs.
That is, each facet of the foam is colored either red, blue, green and each edge of s(F ) is incident to facets
of all three colors. In a Klein foam with boundary the vertices of the bounding Klein graphs are the end
points of s(F ), and the edges are part of F − s(F ).

Definition 2.7 (Klein foam: Total orientation, double orientation). A Klein foam F is totally orientable
(in [KR21], this is termed admissible) if each of its bicolored surfaces are orientable. As with a Klein graph
Γ and its edges, a total orientation on a totally orientable F is a choice of orientation on each bicolored
surface, and this induces a double orientation on each of its facets.

Further observe that a total orientation on a Klein foam F with boundary Γ = ∂F induces a total
orientation on the Klein graph Γ.
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facet seam edge seam vertex

Figure 1. Neighborhoods of a point in a facet, a point in a seam edge, and a seam vertex.

Definition 2.8 (Foamy cobordisms). Let F be a Klein foam that is properly embedded in S3 × [0, 1]. Let
∂F = Γ0 ∪−mΓ1, where Γ0 ⊂ S3 × {0} and Γ1 ⊂ S3 × {1} are each Klein graphs or the empty set. We call
such a foam a foamy cobordism. Note that s(F ) is a 1-manifold with boundary if and only if F has no seam
vertices. Three particular instances of a foamy cobordism are

• a slice foam for Γ0, in which Γ1 is the empty set but Γ0 is not,
• a spanning foam for Γ0, which is a slice foam without seam vertices, and
• a seamed foamy cobordism from Γ0 to Γ1, which is a foamy cobordism without seam vertices in which
each edge component of s(F ) has one endpoint lying on each of Γ0 and Γ1; closed components of
s(F ) are permitted.

By attaching a 4-ball to S3 × {1}, spanning foams and slice foams may be regarded as being properly
embedded in B4.

Definition 2.9 (Bicolored surfaces). Suppose F is a Klein foam. For each color i, let Fi be the union of the
facets colored i. For each pair of distinct colors i, j, the bicolored surface Fij is the closure of Fi∪Fj . Observe
that Fij is indeed a compact surface and contains s(F ), but may be disconnected. A bicolored sphere of a
Klein foam F is a spherical component of some bicolored surface. When a Klein foam is connected, any
closed component of a bicolored surface necessarily contains both colors. Note that a monocolored sphere
(a sphere component of a single color) is a bicolored sphere by definition.

Definition 2.10 (The quantity |sv|). For a Klein graph Γ in S3, let |sv|(Γ) be the minimum number of

seam vertices among the slice foams bounded by Γ. If
#–

Γ is Γ with a total orientation, let |sv|( #–

Γ) be the

minimum number of seam vertices among the totally oriented slicing foams bounded by
#–

Γ.
Similarly, for a pair of Klein graphs Γ0 and Γ1, let |sv|(Γ0,Γ1) be the minimum number of seam vertices

among the foamy cobordisms from Γ0 to Γ1. Analogously define |sv|( # –

Γ0,
# –

Γ1) when the two graphs are totally
oriented.

Remark 2.11. In fact, as we will see in Section 3, seam vertices of totally oriented foams have two isomor-
phism types. This observation with a choice which to call ‘positive’ lifts |sv| to a Z valued function sv on

totally oriented Klein graphs so that the absolute value of sv(
#–

Γ) is |sv|( #–

Γ). In Lemma 3.12, we show that

sv(
#–

Γ) is easily determined from the combinatorics of the totally oriented Klein graph.

Lemma 2.12. Given a totally orientable Klein foam F , there exists a totally orientable Klein foam F ′

without bicolored spheres such that ∂F = ∂F ′.

Proof. Let F be a totally orientable Klein foam. Since F is compact, it has at most finitely many bicolored
spheres. For each bicolored sphere of F , choose a facet of F in that sphere and connect sum a torus onto
its interior. The total orientation of F extends across these connected sums. Thus the resulting foam F ′

continues to be totally orientable with ∂F = ∂F ′ yet has no bicolored spheres. □

2.3. Orbifold Euler Characteristics.

Definition 2.13.

• For a Klein foam F , its orbifold Euler characteristic is

χorb(F ) =
1

2
χ(F )− 1

4
χ(s(F )).
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• For a totally oriented Klein graph
#–

Γ, its slice orbifold Euler characteristic is

χorb
4 (

#–

Γ) = maxχorb(F )

where the maximum is taken over all totally oriented slice foams F in B4 with
#–

Γ = ∂F having
|sv|( #–

Γ) seam vertices and no bicolored spheres.
• For a Klein graph Γ (without a specified total orientation), its slice orbifold Euler characteristic is

χorb
4 (Γ) = maxχorb(F )

where the maximum is taken over all totally orientable slice foams F in B4 with Γ = ∂F having
|sv|(∂F ) seam vertices and no bicolored spheres.

• For two Klein graphs Γ1,Γ2 that cobound a totally orientable seamed foamy cobordism, the seamed
cobordism characteristic is

χorb
4 (Γ1,Γ2; s) = maxχorb(G)

where the maximum is taken over all totally orientable seamed foamy cobordisms G from Γ1 to Γ2

having no bicolored spheres.

Lemma 2.12 gives an easy way to eliminate bicolored spheres. Lemmas 2.17 and 2.18 show that these
maxima are bounded above.

Remark 2.14. As we observe in Lemmas 3.1 and 3.3, a Klein graph need not bound a totally orientable
slice foam and there need not be a seamed foamy cobordism between two Klein graphs with the same number
of vertices. Nevertheless, as shown in Theorem 3.6, these always exist if we permit the foams to have seam
vertices.

Remark 2.15. (1) Definition 2.13 agrees with standard definitions of the orbifold Euler characteristic
for an orbifold Q,

χ(Q) =
∑
q∈Q

(−1)dim q

|G(q)|
,

where G(q) is the local group at the open cell q and the sum is over all open cells [CHK00]. In our
case, the local group of open 2-dimensional cells of F and the open edges of Γ is Z/2Z, acting by the
involution of the double cover. The local group of the seams (including seam vertices) is the entire
Klein group.

(2) Permitting arbitrarily many bicolored spheres allows one to construct totally orientable foams having
the same boundary yet with arbitrarily large χorb

4 as follows. Let F be any totally orientable Klein
foam and let F0 be the boundaryless Klein foam in S4 that is a suspension of a theta curve. Letting
F ′ be a connected sum of F and F0 along points in the interiors of a facets of F and F0 of the same
color, as shown in Figure 2(Left), we see that χorb

4 (F ′) = χorb
4 (F ) + 1

2 .
(3) Permitting arbitrarily many seam vertices similarly allows one to construct totally orientable foams

having the same totally oriented boundary yet with arbitrarily large χorb
4 . Let F be any totally

orientable Klein foam and let F0 be the boundaryless Klein foam in S4 that is the suspension of the
tetrahedral graph. Note that F0 has two seam vertices. Letting F ′ be the connected sum of F and
F0 along points in the interior of seam edges of F and F0, as shown in Figure 2(Right), we see that
χorb
4 (F ′) = χorb

4 (F ) + 1. Also note that if F has no bicolored spheres, then F ′ doesn’t either.

Lemma 2.16. For a foam F without seam vertices, we have

4χorb(F ) = (χ(Frb) + χ(Fbg) + χ(Frg))− |V (∂F )|

Proof. Observe that the sum χ(Frb) + χ(Fbg) + χ(Frg) counts the Euler characteristic of s(F ) three times
but of F − s(F ) only twice. Since there are no seam vertices, each component of s(F ) is either a circle or
an edge with its endpoints as vertices of the Klein graph ∂F . Hence χ(s(F )) = 1

2 |V (∂F )|. Now, beginning
6



F F’ F F’

Figure 2. (Left) A portion of a facet of F and then the result F ′ of its connected sum with
the suspension of the theta graph. (Right) A neighborhood of a point in a seam edge of F
and then the result F ′ of its connected sum with the suspension of the tetrahedral graph.

with Definition 2.13, we may count

4χorb(F ) = 2χ(F )− χ(s(F ))

= 2χ(F − s(F )) + χ(s(F ))

= (2χ(F − s(F )) + 3χ(s(F )))− 2χ(s(F ))

= (χ(Frb) + χ(Fbg) + χ(Frg))− |V (∂F )|.

□

The following two lemmas establish that χorb
4 (F ) and χorb

4 (Γ0,Γ1; s) are bounded above and thus χorb
4 (Γ)

is well-defined.

Lemma 2.17. Suppose Γ is a Klein graph that bounds a totally orientable slice foam. Then for any totally
orientable slice foam F without bicolored spheres such that Γ = ∂F , 4χorb(F ) ≤ µ(Γ)−|V (Γ)|. Consequently,
4χorb

4 (Γ) ≤ µ(Γ)− |V (Γ)|.
Furthermore, if Γ has no knot components then 4χorb

4 (Γ) ≤ 1
2 |V (Γ)|.

Proof. Let F be a totally orientable slice foam without bicolored spheres for the Klein graph Γ.
By Lemma 2.16,

4χorb(F ) = (χ(Frb) + χ(Fbg) + χ(Frg))− |V (∂F )|.

Observe that since χ(Fij) is the sum of the Euler characteristics of the components of Fij which are orientable
surfaces and no component is a sphere (because F has no bicolored spheres), we have χ(Fij) ≤ |Γij | with
equality realized exactly when Fij is a union of disks and tori. Thus χ(Frg)+χ(Fbg)+χ(Frg) ≤ µ(Γ). Hence
4χorb

4 (F ) ≤ µ(Γ)− |V (Γ)|. Therefore 4χorb
4 (Γ) ≤ µ(Γ)− |V (Γ)|.

If Γ has no knot components, then since each component of a bicolored link of Γ must involve at least
two vertice, we have 3|V (Γ)| ≥ 2µ(Γ). Hence µ(Γ) − |V (Γ)| ≤ 3

2 |V (Γ)| − |V (Γ)| = 1
2 |V (Γ)|. Thus we have

4χorb
4 (F ) ≤ 1

2 |V (Γ)|. □

Lemma 2.18. Suppose Γ0 and Γ1 are Klein graphs each with V vertices and F is a totally orientable
seamed foamy cobordism without bicolored spheres between them. Then 4χorb(F ) ≤ µ(Γ0) + µ(Γ1) − 2V .
Consequently, 4χorb

4 (Γ0,Γ1; s) ≤ µ(Γ0) + µ(Γ1)− 2V .

Proof. Viewing the cobordism as F ⊂ S3× [0, 1], we may choose a properly embedded arc in S3× [0, 1] with
endpoints in distinct boundary components that is disjoint from F . The exterior of such an arc is B4 with
a proper embedding of F having boundary as the split union Γ0 ⊔ −mΓ1 in S3. From Lemma 2.17, it then
immediately follows that 4χorb(F ) ≤ µ(Γ0) + µ(Γ1)− 2V . Consequently, 4χorb

4 (Γ0,Γ1; s) ≤ µ(Γ0) + µ(Γ1)−
2V . □
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2.4. Signatures. The weak Euler number e(F ) of a Klein foam is the sum of the relative normal Euler
numbers of the bicolored surfaces, e(F ) := e(Frb)+ e(Fbg)+ e(Frg). In [GR18, Definition 3.10], Gille-Robert
define the signature of a 3-Hamiltonian Klein graph Γ ⊂ S3 to be

σ(Γ) = σ(WF ) +
1

2
e(F )

where F is a properly embedded spanning Klein foam for Γ in B4, e(F ) is its weak Euler number, WF is the
4-manifold Klein cover of B4 branched over F , and σ(WF ) is its signature. They then prove the following:

Theorem 2.19 ( [GR18, Proposition 3.14]). Suppose that Γ is a 3-Hamiltonian Klein graph with bicolored
knots Γij where {i, j, k} = {r, g, b}. Then

σ(Γ) = σ(Γrb) + σ(Γbg) + σ(Γrg)

As suggested by the 2nd footnote on page 2 of [GR18], their definition of the signature of a 3-Hamiltonian
Klein graph and Theorem 2.19 can be extended to Klein graphs that are not 3-Hamiltonian. This echos the
extension of signatures of knots to links where orientation considerations are important. Let us review some
of these details.

Let
#–

L be a link L endowed with an orientation. Given any oriented Seifert surface F for
#–

L, the signature
σ(

#–

L) of
#–

L is the signature of the symmetrized Seifert pairing V + V T of F . Equivalently, after isotoping F

rel-∂ to be properly embedded in B4, σ(
#–

L) = σ(MF ), the signature of the double of B4 branched over F .

Definition 2.20 (Link nullity). The nullity of the link β(L) is the nullity of (V +V T ) plus r− 1, where r is
the number of connected components of F , as in [Pow17]. Note that the nullity of a link is independent of

choices of orientation on the link [KT76, Theorem 2.1]. Note that 0 ≤ β(
#–

L) ≤ µ(L)− 1 for any oriented link
#–

L, and in particular, µ(L)− 1 = 0 and β(L) = 0 for a knot, where µ(L) is the number of components of the
link. While nullity is originally defined as the nullity of (V + V T ) plus r, see [Mur65] and [KT76, Remark
1.2], the version of [Pow17] makes it additive under connected sum.

Theorem 2.21 ( [KT76, Theorem 2.2]). Let L1 and L2 be links in S3. Then:

β(L1 ⊔ L2) = β(L1) + β(L2) + 1 and β(L1#L2) = β(L1) + β(L2)

Murasugi [Mur65] defines the total linking number λ(
#–

L) of
#–

L to be the sum of the linking numbers of all

unordered pairs of components of
#–

L and then shows that the sum σ(
#–

L) + λ(
#–

L) is independent of the choice

of orientation on L. Hence he defines the signature of the unoriented link L to be ζ(L) = σ(
#–

L)+λ(
#–

L). (See
also Definition 3.12 and Remark 3.13 of [GR18].) Gordon-Litherland show that if F is any spanning surface

for L, then ζ(L) = σ(MF ) + e(F ) [GL78, Corollary 5’]. Hence, equipping L with an orientation as
#–

L, we

have σ(
#–

L) = σ(MF ) + e(F )− λ(
#–

L) regardless of any orientation on F .
The following theorem is suggested but not explicitly stated in [GR18, Footnote 2].

Theorem 2.22. Let Γ be a Klein graph in S3. Let F be a spanning foam for Γ in B4. Then

• the integer ζ(Γ) := σ(WF ) +
1
2e(F ) depends only on Γ, and

• ζ(Γ) = ζ(Γrb) + ζ(Γbg) + ζ(Γrg).

We say ζ(Γ) is the signature of Γ.

Proof. The first part, that the sum σ(WF ) +
1
2e(F ) is independent of the choice of spanning foam F for Γ,

follows exactly as in the proof of [GR18, Theorem 3.11] (skipping the middle part). There [GR18, Proposition
3.7] continues to apply because W = B4 in this situation.

The second part follows the first half of the proof of [GR18, Theorem 3.14] where [GL78, Theorem 2]
extends directly to links as discussed in [GL78, §5] while [GL78, Theorem 5’] is used in the place of [GL78,
Theorem 5]. □

Definition 2.23 (Total linking number, and nullity). Let
#–

Γ be a totally oriented Klein graph. Then the

total linking number of
#–

Γ is the sum of the total linking numbers of its bicolored links. That is,

λ(
#–

Γ) = λ(
#–

Γrb) + λ(
#–

Γbg) + λ(
#–

Γrg).
8



In accordance with the relation ζ(L) = σ(
#–

L) + λ(
#–

L) between the Murasugi signature of an unoriented link

L and the signature and total linking number, the signature of
#–

Γ is then σ(
#–

Γ) = ζ(Γ) − λ(
#–

Γ). Similarly,
define the nullity β(Γ) = β(Γrb) + β(Γbg) + β(Γrg) to be the sum of the nullities of the bicolored links.

It follows immediately from these definitions that the operations of mirroring and total orientation reversal
of a totally oriented Klein graph leave µ the component count and β unchanged while λ is negated by
mirroring but unchanged by total orientation reversal. This is recorded in the following lemma.

Lemma 2.24. Let
#–

Γ be a totally oriented Klein graph. Then

λ(− #–

Γ) = λ(
#–

Γ), and

λ(m(
#–

Γ)) = −λ(
#–

Γ), while

µ(− #–

Γ) = µ(m(
#–

Γ)) = µ(
#–

Γ), and

β(− #–

Γ) = β(m(
#–

Γ)) = β(
#–

Γ).

Lemma 2.25. Let Γ1 and Γ2 be Klein graphs. Then we have

β(Γ1#2Γ2) = β(Γ1) + β(Γ2) + 1 and β(Γ1#3Γ2) = β(Γ1) + β(Γ2)

as well as
µ(Γ1#2Γ2) = µ(Γ1) + µ(Γ2)− 2 and µ(Γ1#3Γ2) = µ(Γ1) + µ(Γ2)− 3

Proof. The statement for the nullity β follows from the fact that, as defined, the nullity of a Klein graph
is the sum of the nullities of its bicolored links. Note that an order 2 sum, say along a red edge, causes a
split union of the two blue-green links. The statement for the component count µ is a straightforward count
minding how many bicolored link components are merged under a sum. □

Remark 2.26. Observe that for a 3-Hamiltonian graph
#–

Γ we have λ(
#–

Γ) = 0, β(
#–

Γ) = 0, and µ(
#–

Γ) = 3.

Moreover, σ(
#–

Γ) is independent of the total orientation.

Armed with Definition 2.23, Theorem 2.22 immediately allows for the calculation of the signature of a
totally oriented Klein graph as a sum of the signatures of its oriented bicolored links.

Corollary 2.27. Let
#–

Γ be a totally oriented Klein graph. Then

σ(
#–

Γ) = σ(
#–

Γrb) + σ(
#–

Γbg) + σ(
#–

Γrg).

Proof.

σ(
#–

Γ) = ζ(Γ)− λ(
#–

Γ)

= (ζ(Γrb) + ζ(Γbg) + ζ(Γrg))−
(
λ(

#–

Γrb) + λ(
#–

Γbg) + λ(
#–

Γrg)
)

=
(
ζ(Γrb)− λ(

#–

Γrb)
)
+
(
ζ(Γbg)− λ(

#–

Γbg)
)
+

(
ζ(Γrg)− λ(

#–

Γrg)
)

= σ(
#–

Γrb) + σ(
#–

Γbg) + σ(
#–

Γrg)

□

Remark 2.28. In [GR18, Proposition 3.14] (which we have only partially stated in Theorem 2.19) the
hypothesis that the Klein graph Γ is 3-Hamiltonian is indeed used for the strong signature σ̃(Γ); see Sec-
tion 5.2. Their definition of this strong signature uses that the double branched cover of each bicolored knot
Γij is a rational homology sphere to ensure that the lift of the third color of edges Γk is a link of rationally
null-homologous knots. The double branched cover of a knot is necessarily a rational homology sphere while
the double branched cover of a link of more than one component might not be.

3. Total orientations of Klein graphs and seam vertices

3.1. Foams with seam vertices. For any spatial Klein graph Γ in S3, Gille-Robert show how to construct
a spanning foam (ie. a Klein foam without seam vertices) in B4 whose boundary is Γ [GR18, Proposition
2.4]. However, some Klein graphs do not bound any totally orientable slice foam as we now observe.

Let Γtet ⊂ S3 be the (planar) tetrahedral Klein graph shown in Figure 3. Define Fvtx to be the Klein
foam that arises from the standard neighborhood (B4, Fvtx) of a seam vertex of a Klein foam, a cone on
(S3,Γtet). Also note that Γtet is 3-Hamiltonian.

9



RP3=L(2,1)

Figure 3. (Left) A neighborhood of a seam vertex. (Center) The planar (trivial) Klein
tetrahedral graph is the boundary of a regular neighborhood of a seam vertex. (Right) The
Klein cover of tetrahedral graph.

Lemma 3.1. While Fvtx is totally orientable, Γtet = ∂Fvtx does not bound a totally orientable Klein foam
without seam vertices.

Proof. Suppose F is a totally orientable Klein foam for Γtet without seam vertices. Since Γtet has just
four vertices, F has exactly two seam edges. By symmetry, we may assume each seam edge has the same
endpoints as a red edge. Then the two blue edges and two seam edges form a single cycle as do the two
green edges and two seam edges. Thus the facets Fb and Fg are each connected with connected boundary.

Since F is totally orientable, the surface Fbg is orientable. Choose an orientation of Fbg. This induces an
orientation on each Fb and Fg. Moreover, the bg-orientations on the blue and green edges of Γtet arising from
∂Fbg are also induced from the boundary orientations on ∂Fb and ∂Fg However, with these bg-orientations,
one seam edge connects the tips of the blue edges while the other connects their tails. Yet this is inconsistent
with any orientation induced from ∂Fb. □

Remark 3.2. The Klein graph Γtet#2Γtet bounds a totally orientable slice foam only for certain total
orientations while other total orientations only bound totally oriented foams with at least two seam vertices.

Lemma 3.3. Let Γ2θ = Γθ#2Γθ be the edge connected sum of two trivial theta curves. There is no totally
orientable seamed foamy cobordism from Γtet to Γ2θ, even though they have the same number of vertices.

Proof. Suppose G were a totally orientable seamed foamy cobordism from Γtet to Γ2θ. Then a total orienta-
tion on G induces a total orientation on Γ2θ. Observe that Γ2θ is the boundary of a 2-complex H in R3 ⊂ S3

formed as the product of an interval with a planar graph in the form of the letter ‘H’. With its interior
pushed into B4, H is a totally orientable slice foam for Γ2θ. Moreover, one readily observes that any total
orientation on Γ2θ arises as the boundary of some total orientation on H. Hence, with the total orientation
on Γ2θ induced from the total orientation on G, there is a total orientation on H so that G∪Γ2θ

H is a totally
orientable slice foam for Γtet. However this contradicts Lemma 3.1. □

In contrast to Lemmas 3.1 and 3.3, if we permit our foams to have seam vertices, we can always find
totally orientable foams.

Example 3.4. The Klein cover of Γtet is RP3 and the Klein cover of Fvtx is the cone on RP3. In the double

branched cover over the unknot (Γtet)ij , the edges (Γtet)k lift to a Hopf link (Γ̃tet)k. Since the Klein cover of

Γtet is then the double branched cover of (Γ̃tet)k, we see that the Klein cover of Γtet is RP3. Since (B4, Fvtx)
is a cone on (S3,Γtet), this then implies that the Klein cover of Fvtx is the cone on RP3. See Figure 3.

Remark 3.5. Observe that Example 3.4 shows that the Klein cover of a foam with seam vertices is not a
4-manifold but rather a pseudo 4-manifold where each singularity is a cone on RP3.

Theorem 3.6. Every totally oriented Klein graph is the boundary of a totally oriented Klein foam, possibly
with seam vertices.

Proof. Let
#–

Γ be a totally oriented Klein graph. We will induct on the number of vertices of
#–

Γ.
10



matched unmatched

parallel

antiparallel

Figure 4. An edge of a totally oriented Klein graph is either parallel or antiparallel and
either matched or unmatched. Up to symmetry, there are two possibilities for a matched
antiparallel edge and one otherwise; these five possibilities are shown for a red edge.

If
#–

Γ has no vertices, then
#–

Γ is a link. First, by mixed crossing changes,
#–

Γ may be separated into a split
link where each split component is a link of a single color. These mixed crossing changes may be realized by a
sequence of foamy cobordisms Fm that respect the double orientations as done in the proof of Theorem 4.9;
one only needs to be mindful of the ij-orientations on a mixed crossing change between an i-edge and a
j-edge. Next, two linked components of the same color but with double orientations of opposite sign may be
unlinked as follows. Use the elementary open/close cobordism as in Figure 6(Top Right) to ‘slice open’ one
of the knot components. (This basically connect sums the knot with a trivial theta curve.) Then use mixed
crossing changes with the two new edges to split away the other knot component. Thereafter the sliced open
component can be sewn closed using the elementary open/close cobordism again but in the other direction.

Eventually, we have a split link where each split component is a (possibly multi-component) link of a
single color and where the two orientations on each component are all parallel or all antiparallel. Each split
component bounds a Seifert surface, and we may arrange that the Seifert surfaces for the split components
are mutually disjoint. We color each Seifert surface according to the color of its bounding split component
and we endow each with two orientations induced from the two orientations on the split component. The
result is a foam, bounded by the split link, where the orientations of the bicolored surfaces are coherent,
giving a total orientation to the foam. Together with the foams from the previous cobordisms, we obtain a
totally oriented foamy cobordism from the totally oriented, Klein colored link

#–

Γ to the empty set. Thus
#–

Γ
is the boundary of a totally oriented slice foam.

Now assume
#–

Γ has vertices. Note that a vertex has an odd number of negative edges incident to it
(Definition 2.5). Since

#–

Γ has a vertex, it has an edge of each color.
Let e be a k-edge. Observe that the two i-edges adjacent to e have the same sign if and only if the two

j-edges adjacent to e also have the same sign. Say such an edge is matched; otherwise say it is unmatched.
See Figure 4.

If e is matched, an elementary unzip cobordism, Figure 6(Top Center), along e yields a totally oriented

foamy cobordism from
#–

Γ to a Klein graph
#–

Γ ′ with two fewer vertices obtained by unzipping
#–

Γ along e. By
induction

#–

Γ ′ bounds a totally oriented slice foam, and this cobordism extends to a totally oriented slice foam
bounded by

#–

Γ.
If e is unmatched, an elementary I-H cobordism, shown in Figure 6(Bottom Left), along e yields a totally

oriented foamy cobordism from
#–

Γ to a graph
#–

Γ ′ with the same number of vertices obtained by exchanging
e for an edge e′. This edge e′ has the same set of edges adjacent to it as e, but partitioned differently at
each of its endpoints. This forces e′ to have the sign opposite that of e. (One may check the two unmatched

cases from Figure 4 directly.) Furthermore, if
#–

Γ has no matched edges, then
#–

Γ ′ will have a matched edge:

If f is an i-edge incident to e in
#–

Γ, then at its other end is a k-edge g with sign opposite that of e since f
(and every other edge) is unmatched. However in

#–

Γ ′ the edge g has the same sign as e′ so that f is now
11



Figure 5. The eight total orientations of vertices in a Klein graph are arranged in a cubic
graph. Adjacent vertices differ by reversal of one bicolored orientation. Vertices with oppo-
site orientation are at opposite vertices of the cube. The highlighting shows the partition
into the two tetrahedral orientation types.

matched. Thus an elementary unzip cobordism may be performed along f in
#–

Γ ′ yielding a totally oriented
cobordism from

#–

Γ through
#–

Γ ′ to a Klein graph
#–

Γ ′′ that has two fewer vertices. By induction
#–

Γ ′′ bounds a
totally oriented slice foam, and this cobordism extends it to a totally oriented slice foam bounded by

#–

Γ. □

3.2. Total orientations, vertices, and seam vertices. In the following we show that totally oriented
Klein graphs are partitioned into totally oriented seamed foamy cobordism classes by a function sv(•) that
is a lift of the function |sv(•)|. Indeed it will follow that for any pair of totally oriented Klein graphs Γ0,Γ1,
any totally oriented foamy cobordism needs at least |sv(Γ0) − sv(Γ1)| seamed vertices (of the appropriate
RGB/BGR type), and there is such a foam with exactly that many.

Definition 3.7 (Vertex total orientations, RGB and BGR types). Locally, a vertex of a Klein graph Γ with
its three incoming edges admits 8 total orientations. These may be arranged as the vertices of a cube joined
by an edge when one bicolored orientation is reversed. See Figure 5. Reversing the total orientation pairs
them up as opposite vertices of the cube. One pair has three negative edges and the other three pairs have
a single negative edge. A vertex with three negative edges has a cyclic ordering as either RGB or BGR: Say

the ordering is RGB if the bicolored arc orientations go #–rg,
#–

gb, and
#–

br where
#–
ij indicates that the ij-arc is

oriented at the vertex with an incoming i-edge and and outgoing j-edge. In Figure 5, the vertex at the far
right has the RGB type while the vertex at the far left has the BGR type.

Definition 3.8 (Signed seam vertex count sv). The tetrahedral graph Γtet admits 2 total orientations. For
each total orientation, the four vertices correspond to one set of the four non-adjacent vertices in the cube
graph. See Figure 5. Hence we can also define a totally oriented tetrahedral graph as either RGB or BGR
according to the type of its triply negative vertex.

A regular neighborhood of a seam vertex in a foam is a cone Fvtx on the tetrahedral graph. Hence a seam
vertex of a totally oriented foam is also either RGB or BGR according to the totally oriented tetrahedral
graph in the boundary of this cone.

For a totally oriented Klein graph
#–

Γ, let RGB(
#–

Γ) be the number of RGB vertices and let BGR(
#–

Γ) be the

total number of BGR vertices. Then define the signed seam vertex count to be sv(
#–

Γ) = RGB(
#–

Γ)−BGR(
#–

Γ).

Lemma 3.9. The quantity sv(
#–

Γ) is unchanged by mirroring, negated by orientation reversal, and additive
under connected sum. That is,

sv(m
#–

Γ) = sv(
#–

Γ) but sv(− #–

Γ) = −sv(
#–

Γ)
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and

sv(
# –

Γ1#2
# –

Γ2) = sv(
# –

Γ1) + sv(
# –

Γ2) and sv(
# –

Γ1#3
# –

Γ2) = sv(
# –

Γ1) + sv(
# –

Γ2).

Proof. The behavior under mirroring and orientation reversal are immediate from the actions of these oper-
ations on the signs of the vertices. The additivity follows fairly directly too as an edge connected sum has
the same set of oriented vertices as its summands while a vertex connected sum fuses vertices of opposite
sign. Indeed, a vertex connected sum may be viewed as a tribanding (Definition 3.10 below) of the split
union of the two summands. □

Definition 3.10 (Triband cobordism). Let I be the graph in B3 that is the cone on 3 points in S2. Given
a Klein graph Γ0, triband on Γ is an embedding of ϕ : I× I → S3 so that

• the intersection ϕ(I× I) ∩ Γ0 = ϕ(I× ∂I) is a closed neighborhood of a pair of vertices, and
• the three arcs of ϕ(∂I× I) connect edges of the same color.

Let Γ1 be the Klein graph resulting from surgery along the triband. That is, Γ1 = (Γ0−ϕ(I×∂I))∪ϕ(∂I×I).
We say Γ1 is the result of a tribanding of Γ0 along the two vertices.

In S3 × [0, 2], the foam F = Γ0 × [0, 1] ∪ ϕ(I× I)× {1} ∪ Γ1 × [1, 2] gives the triband cobordism from Γ0

to Γ1.
Furthermore, if Γ0 is endowed with a total orientation and the tribanding is along a pair of oppositely

oriented vertices, then the total orientation extends across the triband cobordism giving a total orientation
on Γ1 as well.

Lemma 3.11. A connected component of a totally oriented Klein graph has either

• no vertices,
• a pair of oppositely oriented vertices, or
• all four types of vertices of tetrahedral orientation.

Proof. Let v be a vertex of a connected totally oriented Klein graph that has no pair of oppositely oriented
vertices. We must then show that the graph has the other three orientation types of vertices of same the
tetrahedral orientation of v. Using Figure 5, for any color i, one checks that an i-edge may join v to only
two types of oriented vertices, one of them has the opposite orientation while the other belongs to the same
tetrahedral orientation (shown as purple and orange in the figure). If there were a pair of edges between two
vertices they must have opposite orientation, therefore there is at most one edge between any pair of vertices.
Thus v must be adjacent to three different vertices. One further sees that the three vertices adjacent to v
must all have different orientation types, but belong to the same tetrahedral orientation. □

Lemma 3.12. Let Γ be a totally oriented Klein graph. Any totally oriented foam F with Γ as its boundary
requires at least |sv(Γ)| seam vertices. Moreover there is a totally oriented foam F with ∂F = Γ with exactly
|sv(Γ)| seam vertices and these vertices are RGB if sv(Γ) > 0 and BGR if sv(Γ) < 0.

Proof. Suppose a totally oriented Klein graph Γ bounds a totally oriented foam F without seam vertices.
Using triband cobordisms, one may construct a foamy cobordism F without seam vertices from Γ to a totally
oriented Klein graph Γ′ where no pairs of vertices have opposite orientation. Observe that sv(Γ) = sv(Γ′).
By a total orientation reversal if needed, assume sv(Γ′) ≥ 0. By Lemma 3.11, any component of Γ′ with
a vertex must have a RGB or a BGR vertex an. So Γ′ has sv(Γ′) RGB vertices (since we have eliminated
pairs of vertices of opposite orientation) and in fact sv(Γ′) vertices of each other RGB tetrahedral orientation
type.

Using a seam vertex we can cap off a vertex and its three neighbors. With |sv(Γ′)| applications of this,
we arrive at a totally oriented Klein graph without vertices. Such graphs bound totally orientable foams
without seam vertices. Put together, Γ bounds a totally oriented foam with exactly |sv(Γ)| seam vertices.

If Γ were to bound a totally oriented foam with fewer seam vertices, then so does Γ′. However then some
triple negative RGB vertex of Γ′ would have to be the end of a properly embedded seam edge. At the other
end would be a vertex with the opposite orientation, contrary to the construction of Γ′. □

3.3. Cobordisms and connected sums of totally oriented Klein graphs.
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Lemma 3.13. Suppose
#–

F is a totally oriented foamy cobordism in S3× [0, 1] from
# –

Γ0 to
# –

Γ1 with a spanning

seam edge s between vertices vi of
#–

Γ i. Then
#–

F ′ =
#–

F \N(s) is a totally oriented foam in B4 with ∂
#–

F ′ =
# –

Γ1#3 −m(
#–

Γ0) where −m(
#–

Γ0) is the reversed mirror of
#–

Γ0 and the connected sum is along the vertices vi.

Proof. This follows from basically the same proof as for the case of cobordisms between oriented links. □

Lemma 3.14. Let
#–

Γ be a totally oriented Klein graph in S3. Let v0 and v1 be two vertices of the same
orientation type. Then there is a seamed foamy cobordism from

#–

Γ to itself for which the permutation on the
vertices induced by the seams is a transposition of v0 and v1.

Proof. Begin with the identity cobordism
#–

F =
#–

Γ × I in S3 × I. Let si be the seam edge vi × I, and choose
a point pi in the interior of si. Observe that the boundary Si = ∂N(pi) of a small regular neighborhood

N(pi) is a 3-sphere that meets
#–

F in a trivial θ-curve
#–

θ i with vertices Si ∩ si. The total orientation on
#–

θ i is

induced by the foam
#–

F ∩N(pi) in the 4-ball N(pi) so that the vertex v+i of Si ∩ si with higher I–coordinate
has the same orientation type as vi while the other v−i has the opposite orientation type.

Now choose a simple arc ϕ in S3 × I connecting p0 to p1 that is otherwise disjoint from F . Then the
ball N(ϕ) is the tubing of the two balls N(p0) and N(p1) and its boundary S = ∂N(ϕ) is the connected

sum of S0 and S1 that meets F in the split graph
#–

θ 0 ⊔ #–

θ 1. (The total orientation is still induced from
#–

F ∩ N(ϕ) =
#–

F ∩ (N(p0) ∪ N(p1)).) Since v0 and v1 have the same orientation type,
#–

θ 0 and
#–

θ 1 are

isomorphic as totally oriented Klein graphs. Furthermore, because
#–

θ 0 is a trivial θ-curve, it is isotopic to
its own reverse. Because they are embedded as a split graph, there is a totally oriented Klein foam

# –

Fθ

homeomorphic to
#–

θ 0× I and embedded in S with ∂
# –

Fθ =
#–

θ 0 ⊔
#–

θ 1 so that the seams of
#–

F θ connect v+0 to v−1
and v−0 to v+1 . Replacing

#–

F ∩N(ϕ) with
#–

F θ produces a new totally oriented Klein foam
#–

F ′ in which s0 and
s1 have been replaced by seams that connect one end of v0 × ∂I to the other end of v1 × ∂I and vice-versa,
leaving all other seams as they were and producing the desired permutation. □

Lemma 3.15. Suppose there is a seamed foamy cobordism from
#–

Γ0 to
#–

Γ1. Then for any pair of vertices vi
of

#–

Γ i with the same orientation type, there exists a seamed foamy cobordism from
#–

Γ0 to
#–

Γ1 with seam edge
connecting v0 to v1.

Proof. This follows after applying Lemma 3.14 to construct a seamed foamy cobordism from
# –

Γ1 to itself
yielding a permutation of the vertices v0 and v1. □

Lemma 3.16. Suppose
#–

Γ0 and
#–

Γ1 are totally oriented Klein graphs. For any given pair of vertices vi of
#–

Γ i

with the same orientation type, form the connected sum
# –

Γ1#3 −m
#–

Γ0 along v0 and v1. If there is a seamed
foamy cobordism between

#–

Γ0 and
#–

Γ1, then there is a slice foam for
# –

Γ1#3 −m
#–

Γ0.

Proof. This proof essentially follows the analogous construction of a slice disk for K1# − mK0 from a
concordance between K0 and K1. First, by Lemma 3.15, there exists a seamed foamy cobordism

#–

F from
#–

Γ0

to
#–

Γ1 with a seam edge e connecting v0 to v1. Then
#–

F \N (e) is then a slice foam for
# –

Γ1#3 −m
#–

Γ0. □

4. Bounds

In this section, we prove Theorem 4.1, bounding the orbifold Euler characteristic of the graph Γ1#3−mΓ2

below by the signature difference, and above by the Klein Gordian distance between Γ1 and Γ2.

Theorem 4.1. Suppose that
# –

Γ1 and
# –

Γ2 are totally oriented Klein graphs that are related by a sequence of
crossing changes. Set V := |V (Γ1)| = |V (Γ2)| and µ := µ(Γ1) = µ(Γ2). Then:

|σ( # –

Γ1)− σ(
# –

Γ2)| − β(
# –

Γ1)− β(
# –

Γ2) + 4µ− 12
(a)

≤ 5− 4χorb
4 (

# –

Γ1#3 −m
# –

Γ2)− 2V

(b)

≤ −4χorb
4 (

# –

Γ1,
# –

Γ2; s)− 2V

(c)

≤ 4d I(
# –

Γ1,
# –

Γ2)

where
# –

Γ1#3 −m
# –

Γ2 is any vertex connected sum of
# –

Γ1 and −m
# –

Γ2 compatible with the total orientations.
14



Proof. In subsection 4.1, Corollary 4.6 proves inequality (a) since both graphs will have the same signed
vertex count sv and Lemma 4.7 establishes inequality (b). In subsection 4.2 we prove inequality (c). The
proof then follows. □

Proof of Corollary 1.1. Let
# –

Γ1 be θ with any Klein coloring and total orientation. Let
# –

Γ2 be a totally oriented
and Klein colored trivial theta with the same vertex types as

# –

Γ1. Then
# –

Γ1#3 −m
# –

Γ2 =
# –

Γ1.
We now apply Theorem 4.1. Observe that the signature of the trivial theta vanishes, and for any totally

oriented, Klein colored theta curve we have β = 0, 4µ− 12 = 0, and 5− 2V = 1. Finally, d I(
# –

Γ1,
# –

Γ2) is u I(θ)
since unknotting a theta curve is insensitive to total orientation and any change of Klein coloring preserves
the same and mixed crossing types. So, inequalities (a) and (c) give the desired result. □

Remark 4.2. The inequality 1
4 |σ(θ)| ≤ u I(θ) for θ-curves from Corollary 1.1 (without the slice orbifold

Euler characteristic), can be obtained by careful application of Theorem 2.19, and 1
2 |σ(K)| ≤ u(K) for a

knot K.

We begin by exploring inequalities relating signature to orbifold Euler characteristic and then establish
the inequalities relating orbifold Euler characteristic to sequences of crossing changes.

4.1. Bounding signature. To establish the upper bound on the signature of a Klein graph, we use the
corresponding result for knots. To establish the upper bound on the difference of signatures of two Klein
graphs, we use properties of the vertex sum.

Setting z = −1 in [Pow17, Theorem 1.4], Powell shows that |σ( #–

L)|+ µ(L)− 1− β(
#–

L) ≤ 2g4(
#–

L) so that

|σ( #–

L)| ≤ 2g4(
#–

L)− µ(L) + 1 + β(
#–

L)

= (2g4(
#–

L) + µ(L)− 2)− 2µ(L) + 3 + β(
#–

L)

= 1− χ4(
#–

L)− 2(µ(L)− 1) + β(
#–

L).

Theorem 4.3. For a totally oriented Klein graph
#–

Γ ⊂ S3, we have

|σ( #–

Γ)| ≤ 3− |V (Γ)|+ 2|sv( #–

Γ)| − 4χorb
4 (

#–

Γ)− 2(µ(Γ)− 3) + β(
#–

Γ).

Proof. By the definition of χorb
4 , there exists a totally orientable foamy cobordism

#–

F for
#–

Γ such that
#–

F has

no bicolored spheres and χorb(
#–

F ) = χorb
4 (

#–

Γ).
By Theorem 2.19:

|σ( #–

Γ)| = |σ( #–

Γrb) + σ(
#–

Γbg) + σ(
#–

Γrg)|

≤ |σ( #–

Γrb)|+ |σ( #–

Γbg)|+ |σ( #–

Γrg)|

Since each
#–

Γ ij is an oriented link, and |σ( #–

L)| ≤ 1 − χ4(
#–

L) − 2(µ(L) − 1) + β(
#–

L) for any oriented link
#–

L
by [Pow17, Theorem 1.4], then

≤ 3− (χ4(
#–

Γrb) + χ4(
#–

Γbg) + χ4(
#–

Γrg))− 2(µ(Γ)− 3) + β(
#–

Γ)

Since F is totally oriented with no bicolored spheres, each surface
#–

F ij is oriented and has no sphere compo-

nents. Then, since −χ4(
#–

Γ ij) ≤ −χ(
#–

F ij) by definition,

−
(
χ4(

#–

Γrb) + χ4(
#–

Γbg) + χ4(
#–

Γrg)
)
≤ − (χ(Frb) + χ(Fbg) + χ(Frg))

Since each seam edge lies on all three bicolored surfaces and each monochromatic face lies on two bicolored
surfaces:

χ(Frb) + χ(Fbg) + χ(Frg) = (2(χ(Fr) + χ(Fb) + χ(Fg))− 3χ(s(F )))

= 2(χ(F ) + 2χ(s(F )))− 3χ(s(F ))

= 2χ(F ) + χ(s(F ))

By Definition 2.13, 4χorb(F ) = 2χ(F )− χ(s(F )). So:

= 4χorb(F ) + 2χ(s(F ))
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As s(F ) is a 1-complex with |V | := |V (Γ)| boundary vertices and |sv| := |sv( #–

Γ)| seam vertices, it has
(|V |+ 4|sv|)/2 edges. So 2χ(s(F )) = 2(|V |+ |sv|)− (|V |+ 4|sv|) = |V | − 2|sv|. So:

= 4χorb(F ) + |V | − 2|sv|

= 4χorb
4 (

#–

Γ) + |V | − 2|sv|
Therefore we have

|σ( #–

Γ)| ≤ 3− (4χorb
4 (

#–

Γ) + |V | − 2|sv|)− 2(µ(Γ)− 3) + β(
#–

Γ)

≤ 3− |V (Γ)|+ 2|sv| − 4χorb
4 (Γ)− 2(µ(Γ)− 3) + β(

#–

Γ)

as claimed. □

Lemma 4.4. Suppose that
#–

Γ ,
# –

Γ1, and
# –

Γ2 are totally oriented Klein graphs. Then:

σ(− #–

Γ) = σ(
#–

Γ) and σ(m
#–

Γ) = −σ(
#–

Γ)

and

σ(
# –

Γ1#3
# –

Γ2) = σ(
# –

Γ1) + σ(
# –

Γ2)

for any vertex sum compatible with the total orientations.

Proof. As oriented links, (Γ1#3Γ2)ij = (Γ1)ij#(Γ2)ij for i, j ∈ {r, g, b}. Then this lemma follows from
Corollary 2.27 and the fact that signature is unchanged under orientation reversal, negated under mirroring,
and additive for oriented links (e.g. [BZH14, Proposition 13.12] and [CF08, Proposition 2.13]). □

This immediately gives:

Corollary 4.5. Suppose that
# –

Γ1 and
# –

Γ2 are totally oriented Klein graphs. Then:

σ(
# –

Γ1)− σ(
# –

Γ2) = σ(
# –

Γ1#3 −m
# –

Γ2)

where
# –

Γ1#3 −m
# –

Γ2 is any vertex sum of
# –

Γ1 and −m
# –

Γ2 compatible with the total orientations. □

Corollary 4.6. Suppose that
# –

Γ1 and
# –

Γ2 are totally oriented Klein graphs, each with at least one vertex. Let
µi = µ(

#–

Γi) and Vi = |V (
#–

Γi)|. Then:

|σ( # –

Γ1)−σ(
# –

Γ2)| ≤ 3− (V1+V2−2)+2|sv( # –

Γ1)− sv(
# –

Γ2)|−4χorb
4 (

# –

Γ1#3−m
# –

Γ2)−2(µ1+µ2−6)+β(
# –

Γ1)+β(
# –

Γ2)

where Γ1#3 −mΓ2 is any vertex sum of
# –

Γ1 and −m
# –

Γ2 compatible with the total orientations.

Proof. This follows from Theorem 4.3 and Corollary 4.5 along with Lemmas 2.24, 2.25, and 3.9. □

Lemma 4.7. Suppose that
#–

Γ1 and
#–

Γ2 are totally oriented Klein graphs, each with at least one vertex, that
cobound a totally orientable seamed foamy cobordism. Then,

χorb
4 (

#–

Γ1,
#–

Γ2; s) ≤ χorb
4 (

#–

Γ1#3 −m
#–

Γ2)−
5

4

where
#–

Γ1#3 −m
#–

Γ2 is any vertex sum of
# –

Γ1 and −m
# –

Γ2 compatible with the total orientations.

Proof. Let I be the graph in B3 that is the cone on 3 points in S2. Let F be a seamed foamy cobordism
from

#–

Γ1 to
#–

Γ2 in S3 × [0, 1] realizing χorb
4 (

#–

Γ1,
#–

Γ2; s) and having no bicolored spheres.

By Lemma 3.16, from any pair of vertices v1 ∈ #–

Γ1 and v2 ∈ #–

Γ2 with the same orientation, we may
construct a slice foam for

#–

Γ1#3 −m
#–

Γ2 by summing along a seam connecting v1 and v2.
Using Definition 2.13, we may count

χorb(F ) = χorb(F ′) +
1

4
− 3

2
= χorb(F ′)− 5

4
.

Since F ′ may not realize χorb
4 (

#–

Γ1#3 −m
#–

Γ2), we then have the stated inequality. □

Remark 4.8. A priori, vertex sums along different pairs of vertices may produce different foamy cobordisms.
The slice orbifold Euler characteristic that we calculate thus depends on the choice of vertices, but for any
choice the slice orbifold characteristic is bounded below by the signature difference.

16



saddle (un)zip

I-H

open/close

triband

Figure 6. (Top Left) The elementary saddle cobordism. (Top Center) The elementary
(un)zip cobordism. (Top Right) The elementary open/close cobordism. (Bottom Left) The
elementary I-H cobordism. (Bottom Right) The triband cobordism.

4.2. Building foams from crossing changes. In this section, we build foams with a view exploring the
inequality (c) in Theorem 4.1. The two basic elementary cobordisms we employ are shown in Figure 6(Top
Left) and (Top Center): the elementary saddle cobordism and the elementary (un)zip cobordism.

Theorem 4.9. Suppose there is a sequence of s same-colored crossing changes and m mixed-colored crossing
changes between totally oriented Klein graphs

# –

Γ1 and
# –

Γ2. Then there is a totally orientable seamed foamy
cobordism

#–

F between
# –

Γ1 and
# –

Γ2 without bicolored spheres with

χorb(
#–

F ) = −|V (
# –

Γ1)|/2− (s+m/2).

Remark 4.10. Crossing changes do not alter total orientations on the edges involved. Indeed, any choice
of total orientation on Γ1 confers a total orientation on Γ2 and extends to a total orientation on the seamed
foamy cobordism F constructed in the proof of Theorem 4.9.

Proof of Theorem 4.9. In the appendix of [GR18], a foam is constructed from a sequence of crossing changes
on a Klein graph. However, the constructed foam is not necessarily totally orientable. Here we review such
a construction and how to alter it in order to produce a totally orientable foamy cobordism. The key step
is to replace any problematic same-colored crossing change by a pair of mixed-colored crossing changes.
Thereafter, we determine the Euler characteristic of the constructed foam.

Mirroring as needed, Figure 7 shows, via a movie, how single same-colored or mixed-colored crossing
changes of oriented arcs of a Klein graph can be realized as an “elementary” foamy cobordism of type Fs or
Fm from Γ to Γs or Γm, respectively. Observe that Fs is assembled using two elementary saddle cobordisms
while Fm is assembled using a pair of elementary zip/unzip cobordisms. See Figure 6. Further note that
both Fs and Fm are seamed foamy cobordisms.

Stacking these cobordisms together according to a crossing change sequence from a totally oriented Klein
graph

# –

Γ1 to a totally oriented Klein graph
# –

Γ2 then assembles a seamed foamy cobordism F between the two
17
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isotopy

isotopy

isotopyisotopy

saddle

unzip

Fs:

Fm:

isotopy

isotopy

Figure 7. Top: Movie of an oriented same crossing change cobordism Fs realized by two
elementary saddle cobordisms. Bottom: Movie of an oriented mixed crossing change cobor-
dism Fm realized by a pair of elementary zip/unzip cobordisms.

isotopy

one
same color

crossing 
change

two
mixed color

crossing 
changes

isotopy

Figure 8. A same crossing change may be realized as two mixed crossing changes.

graphs. However, one must be more careful to ensure the foamy cobordism F admits a total orientation that
respects the total orientations of the two graphs.

Observe that crossing changes do not alter the double orientations on edges of a totally oriented Klein
graph. Hence, through the sequence of crossing changes, the total orientation on Γ1 induces a total orientation
on each of the intermediate graphs and is carried to the total orientation on Γ2. To make the elementary
crossing change foams piece together into a totally oriented foam, the elementary crossing change cobordisms
need to respect these total orientations.

Figure 7 (Top) shows how a saddle-saddle sequence produces a foamy cobordism associated to a same-color
crossing change of oriented arcs. This same-color crossing change cobordism Fs between Klein graphs Γ and
Γs is built from two saddle moves that respect a choice of orientations on the arcs involved. Together these
saddles form a 2-dimensional 1-handle that is attached in a manner that respects the orientation chosen
on these arcs of Γ. (The slice genus bound on unknotting number for knots follows from stacking such
cobordisms.)

Note that a same-colored crossing change involves either one or two edges. When the double orientations
of the edges involved in a same-colored crossing change have the same sign (are all parallel or all antiparallel),
one may observe that Fs is totally orientable in a manner that respects the total orientations of Γ and the
resulting Γs. However, suppose a same-colored crossing change involved two distinct i-colored edges where
the edges have opposite sign. Then one of the surfaces (Fs)ij and (Fs)ik is orientable while the other is
non-orientable. Hence, the cobordism Fs associated to a same-color crossing change is totally orientable

18



(with a total orientation respecting the total orientations of Γ and Γs) exactly when the edges involved have
the same sign of double orientation. Fortunately, as shown in Figure 8, a problematic same-color crossing
change (where the edges have different signs) can be realized as a pair of mixed-color crossing changes.

Figure 7 (Bottom) shows how a zip-unzip sequence produces a seamed foamy cobordism associated to

a mixed-color crossing change of oriented arcs. This mixed-color crossing change cobordism
#   –

Fm between
totally oriented Klein graphs

#–

Γ and
#   –

Γm is homeomorphic to the totally oriented trivial cobordism
#–

Γ × I
with a 1-handle joining the facet surfaces of the two colors of the crossing change along with a disk of the
third color that is the co-core of the handle. (This move adds a closed component to the seams.) Suppose

the mixed-color crossing changes involves an i-colored and a j-colored edge. When forming
#   –

Fm, the 1-handle
is attached to

#–

Γ × I so that (
#   –

Fm)ij is oriented, extending the orientation of (
#–

Γ × I)ij . Then, since (
#   –

Fm)ik
and (

#   –

Fm)jk are identified with (
#         –

Γ× I)ik and (
#         –

Γ× I)jk by having an interior disk of (
#–

Γ × I)i and (
#–

Γ × I)j
changed to a k-colored disk, the surfaces are oriented. Indeed, this shows that the bicolored surfaces of

#   –

Fm

are oriented in a manner that respect the total orientations of Γ and Γm. Hence
#   –

Fm is a totally oriented
cobordism between

#–

Γ and
#   –

Γm.
Now, given a sequence of crossing changes from

# –

Γ1 to
# –

Γ2, exchange any same-colored crossing change
between a parallel edge and an antiparallel edge for a pair of mixed-colored crossings changes so that the
crossing changes are realized by totally oriented elementary foamy cobordisms. Then stack all these totally
oriented elementary foamy cobordisms together to assemble a totally oriented foamy cobordism

#–

F from
# –

Γ1

to
# –

Γ2.
Furthermore, one readily observes that each component of each bicolored surface of a mixed-color crossing

change cobordism
#   –

Fm between
#–

Γ and
#   –

Γm has boundary meeting each
#–

Γ and
#   –

Γm. Indeed, the only com-
ponent of (Γm)ij which is not identified with a component of (

#–

Γ × I)ij is the one obtained by a 1-handle
attachment. Similarly, each component of each bicolored surface of a totally oriented same-colored crossing
change cobordism

# –

Fs meets both
#–

Γ and
# –

Γs. Consequently, a totally oriented foamy cobordism from
# –

Γ1 to
# –

Γ2 obtained by stacking totally oriented elementary crossing change cobordisms has no bicolored spheres.

Now we calculate the Euler characteristics of these elementary cobordisms. (Total orientations play no
role here.) According to the above descriptions, the orbifold Euler characteristics of these elementary crossing
change cobordisms are calculated to be

χorb(Fs) = χorb(Γ× I)− 1

2
· 2 = χorb(Γ× I)− 1

and

χorb(Fm) = χorb(Γ× I)− 1

2
· 1 = χorb(Γ× I)− 1

2
.

So now given a sequence of s same-colored crossing changes and m mixed-colored crossing changes between
Klein graphs Γ1 and Γ2 where the edges of Γ1 have been assigned some orientations, let F be the foamy
cobordism from Γ1 to Γ2 obtained by stacking the associated elementary crossing change cobordisms. Hence

χorb(F ) = χorb(Γ1 × I)− s−m/2.

Finally, the seam edges join the vertices of the components of Γ1 × ∂I, so χorb(Γ1 × I) = χ(Γ1). Hence,
χorb(F ) = χ(Γ1)− s−m/2 = − 1

2 |V (Γ1)| − s−m/2, as claimed.

Observe that the contribution to χorb(F ) of an elementary same-color crossing change cobordism is twice
that of a mixed-color crossing change cobordism. Since each same-colored crossing change may be realized
by two mixed-color crossing changes, we may instead build a totally oriented foamy cobordism

#–

F ′ from
# –

Γ1

to
# –

Γ2 by stacking m + 2s elementary mixed-color crossing change cobordisms so that χorb(
#–

F ′) = χorb(
#–

F ).

Furthermore, as discussed above, such a totally oriented foamy cobordism
#–

F ′ will have no bicolored spheres.
□

Corollary 4.11. Suppose the Klein Gordian distance between two Klein graphs Γ1 and Γ2 is d I(Γ1,Γ2).
Then

−χorb
4 (Γ1,Γ2; s) ≤ d I(Γ1,Γ2) +

1

2
|V (Γ1)|.
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Proof. Say d I(Γ1,Γ2) is realized by a sequence of s same-colored crossing changes and m mixed-colored

crossing changes. Then by Theorem 4.9 there is a seamed foamy cobordism F such that χorb(F ) =
− 1

2V (Γ1)− d I(Γ1,Γ2). Since χ
orb(F ) ≤ χorb

4 (Γ1,Γ2; s) by Definition 2.13, we have − 1
2V (Γ1)− d I(Γ1,Γ2) ≤

χorb
4 (Γ1,Γ2; s). The inequality follows. □

5. Examples

We present several examples of how our bounds shed light on the unknotting number of θ-curves; our
bounds improve previously known bounds. We conclude by presenting examples of θ-curves showing that
the stronger form of Gille-Robert’s signature does not produce bounds on unknotting number.

5.1. Improved bounds. Let the standard unknotting number u(θ) be the minimum number of crossing
changes needed to unknot θ.

This is known to be bounded below by the maximal constituent unknotting number of the graph, that
is mcu(g) = max{u(s)| where s is a constituent of g} [BO18]. (For any Klein coloring of a θ-curve, a con-
stituent knot is a bicolored knot.) The following is a family of θ-curves where our new bound 1

4 |σ(θ)| ≤ u I(θ)
significantly improves on the past result.

n

n

n

n

Figure 9. (Left) A θ-curve θ2 for which every constituent knot is the (2, 5)-torus knot
51. Highlighted are a set of 4 crossing changes that unknot θ2. (Center) A θ-curve θ3 for
which every constituent knot is the (2, 7)-torus knot 71. Highlighted are a set of 6 crossing
changes that unknot θ3. (Right) A generalization to a family of θ-curves θn for which every
constituent knot is the (2, 2n+ 1)-torus knot.

In the theta curve θ2 of Figure 9(Left), all of the constituent knots are 51, so mcu(θ2) = u(51) = 2. (Note
|σ(51)| = 4.) Thus the earlier bounds gives 2 ≤ u(θ2). Next |σ(θ2)| = 3|σ(51)| = 3 · 4 = 12. So our new
bound gives 1

4 |σ(θ2)| = 3 ≤ u I(θ2). In the figure there is a set of 2 same crossings and 2 mixed crossing
that will unknot θ2, giving s+ m

2 = 3. Hence u I(θ2) = 3 and our lower bound on u Iis sharp in this case.
Furthermore, u I(θ2) = 3 implies that u(θ2) ≥ 3, improving the lower bound on unknotting number from 2
to 3.

Similarly, in the theta curve θ3 of Figure 9(Center), all of the constituent knots are 71, so mcu(θ3) =
u(71) = 3. (Note |σ(71)| = 6.) Thus the earlier bounds gives 3 ≤ u(θ3). Next |σ(θ3)| = 3|σ(71)| = 3 · 6 = 18.
So our new bound gives 1

4 |σ(θ3)| = 4.5 ≤ u I(θ3). In the figure there is a set of 3 same crossings and 3 mixed
crossing that will unknot θ3, giving s + m

2 = 4.5. Hence u I(θ3) = 4.5 and our lower bound on u Iis sharp
in this case. Furthermore, u I(θ3) = 4.5 implies that u(θ3) ≥ 5, improving the lower bound on unknotting
number from 3 to 5.

Generalizing these examples further gives a family of θ-curves θn for n ∈ N where all of the constituent
knots are torus knots T (2, 2n + 1), shown in Figure 9(Right). Here mcu(θn) = u(T (2, 2n + 1)) = n. Thus
the earlier bound gives n ≤ u(θn) and our new bound gives 1

4 |σ(θn)| = 3
2n ≤ u I(θn). Similarly these

examples have a set of n same crossings and n mixed crossing that will unknot θn, giving s+ m
2 = 3

2n. Hence

u I(θn) =
3
2n while u(θn) ≤ 2n.

Question 5.1. While u(θn) ≤ 2n, our count u I(θn) = 3
2n implies that u(θn) ≥ ⌈ 3

2n⌉. Is u(θn) < 2n for
some n ≥ 2?

Remark 5.2. Observe that u(θ2) ∈ {3, 4}. If u(θ2) = 3, then θ2 would be unknotted by a set of 3 same
crossing changes.

Similarly, u(θ3) ∈ {5, 6}. If u(θ3) = 5, then θ3 would be unknotted by a set of 4 same crossing changes
and 1 mixed crossing change.
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Remark 5.3. Each θn is the edge connected sum of a theta curve θ′n and the knot T (2, 2n+1). One observes
that mcu(θ′n) = u(T (2, 2n + 1)) = n so both of these have unknotting number n. Hence if u(θn) < 2n for
some n ≥ 2, answering Question 5.1 in the affirmative, then the unknotting number for theta curves would
be not additive under edge connected sum.

5.2. Strong signature. In their article, Gille-Robert define two signature invariants, σ and σ̃ for 3-
Hamiltonian Klein graphs; we term them the weak signature and the strong signature. The signature used
through this article (which we extend to all Klein graphs) is the weak signature σ(Γ), defined as

σ(Γ) = σ(WF ) +
1

2
e(F ),

and is equivalent to the sum of the signatures of the constituent knots σ(Γ) = σ(Krb) + σ(Kbg) + σ(Krg)
[GR18, Proposition 3.14]. The term σ(WF ) is the signature of the 4-manifold Klein cover of the 4-ball
branched over a Klein foam F for Γ, and e(F ) is the weak Euler number of the foam F , given by the sum
of relative normal Euler numbers of the facets, e(Frb) + e(Fbg) + e(Frg). The strong signature is defined as

σ̃(Γ) = σ(WF ) +
1

2
ẽ(F ),

where ẽ(F ) is the strong Euler number [GR18, Definition 3.10]. The strong Euler number is given by the sum

of relative normal Euler numbers of the surfaces F̃ r
r + F̃ b

b + F̃ g
g . Each surface F̃ i

i , i = r, g, b is the image of the
fixed point surface of the diffeomorphism induced by the action on WF of the element i in the Klein group.
It is shown in [GR18, Proposition 3.14] that σ̃(Γ) can be calculated from a sum Γ̃ = ξ(Γ̃r

r)+ ξ(Γ̃b
b)+ ξ(Γ̃g

g) of

signatures of the links Γ̃i
i in the rational homology spheres bounding the 4-manifolds W/i (which we can also

think of as double covers of the 4-ball branched over the surfaces Fjk). See [GR18, Defn 3.10], [GR18, Thm
3.11], [GR18, Definition 3.12].

It is natural to ask whether the bounds of Theorem 4.1 extend to strong signature. In the following
example, we use the Kinoshita-Wolcott family of theta-curves [Kin58,Wol87] to show that, unlike the weak
signature, strong signature does not yield a successful bound.

2p 2q 2r

Figure 10. The Kinoshita-Wolcott θ-curve θ(p, q, r). [Kin58,Wol87]

Let θ(p, q, r) be the Kinoshita-Wolcott θ-curve with p, q and r full twists shown in Figure 10. Notice that
all constituent knots are unknotted, thus all edges lift to knots in the three-sphere, which we may use for
the calculation of strong signature. Then:

σ̃(θ(p, q, r)) =



−8(p+ q + r) if p, q, and r are odd

−8p if p is odd and q and r are even

−8q if q is odd and p and r are even

−8r if r is odd and p and q are even

0 else

So if we take p = 1 and q and r positive odd integers, we get an infinite family of examples with
u(θ(p, q, r)) = 1, and |σ̃(θ(p, q, r))| = 8(1 + q + r) > 1.

21



6. Appendix

Here we aggregate information about the behavior of linking number, nullity, component count, signature,
and seam vertex count under reversal, mirroring and connected sum.

invariant mirror reverse

λ λ(m(
#–

Γ)) = −λ(
#–

Γ) λ(− #–

Γ) = λ(
#–

Γ)

β β(m(
#–

Γ)) = β(
#–

Γ) β(− #–

Γ) = β(
#–

Γ)

µ µ(m(
#–

Γ)) = µ(
#–

Γ) µ(− #–

Γ) = µ(
#–

Γ)

σ σ(m
#–

Γ) = −σ(
#–

Γ) σ(− #–

Γ) = σ(
#–

Γ)

sv sv(m
#–

Γ) = sv(
#–

Γ) sv(− #–

Γ) = −sv(
#–

Γ)

Table 1. The behavior of linking number, nullity, component count, signature, and signed
seam vertex count under reversal and mirroring, from Lemma 2.24, Definition 3.8, and
Lemma 4.4.

invariant #2 #3

β β(Γ1#2Γ2) = β(Γ1) + β(Γ2) + 1 β(Γ1#3Γ2) = β(Γ1) + β(Γ2)
µ µ(Γ1#2Γ2) = µ(Γ1) + µ(Γ2)− 2 µ(Γ1#3Γ2) = µ(Γ1) + µ(Γ2)− 3

σ σ(
# –

Γ1#3
# –

Γ2) = σ(
# –

Γ1) + σ(
# –

Γ2)

sv sv(
# –

Γ1#2
# –

Γ2) = sv(
# –

Γ1) + sv(
# –

Γ2) sv(
# –

Γ1#3
# –

Γ2) = sv(
# –

Γ1) + sv(
# –

Γ2)

Table 2. The behavior of nullity, component count, signature, and signed seam vertex
count under connected sum from Lemmas 2.25, Lemma 3.9, and Lemma 4.4. Signature
under order two connected sum is dependent on edge choice and is omitted.
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