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Abstract— Wide area monitoring, protection and control for 

power network systems are one of the fundamental components 

of the smart grid concept. Synchronized measurement technology 

such as the Phasor Measurement Units (PMUs) will play a major 

role in implementing these components and they have the 

potential to provide reliable and secure full system observability. 

The problem of Optimal Placement of PMUs (OPP) consists of 

locating a minimal set of power buses where the PMUs must be 

placed in order to provide full system observability. In this paper 

a novel solution to the OPP problem using a Memetic Algorithm 

(MA) is proposed. The implemented MA combines the global 

optimization power of genetic algorithms with local solution 

tuning using the hill-climbing method. The performance of the 

proposed approach was demonstrated on IEEE benchmark 

power networks as well as on a segment of the Idaho region 

power network. It was shown that the proposed solution using a 

MA features significantly faster convergence rate towards the 

optimum solution. 

Keywords—Memetic Algorithm, Optimal PMU Placement, 

Phasor Measurement Units, Power Grid, Situational Awareness  

I. INTRODUCTION 

Phasor Measurement Units (PMUs) have recently become 
the focus of work for many researchers primarily due to their 
potential on becoming one of the major enablers of the Wide 
Area Monitoring, Protection And Control (WAMPAC) for 
power network systems [1]. WAMPAC can be seen as one of 
the fundamental components of the envisioned smart grid 
concept. One of the major benefits of this technology is the 
improvement in stability, reliability and security of power 
production, transmission and distribution systems [1], [2], [3], 
[4]. 

PMUs are generally considered the most advanced 
synchronized measurement technology. When compared to 
previous solutions, PMUs offer the following major 
capabilities: 1) location independent measurement 
synchronization using Global Positioning System (GPS), 2) 
direct measurements of voltage and current phase angles and 3) 
increased accuracy, frequency, reliability and security of state 
measurements [5]. As such, the installation of PMUs can be 
seen as a major contribution to the overall resiliency of the 
critical infrastructure systems [4], [6], [7], [8].  

Unlike standard voltage and current metering systems, 
PMUs are capable of observing the voltage and current phasors 

from all power network branches incident to a given power 
distribution center known as a power bus [9]. This observation 
of the voltage phasors on incident buses is enabled by 
combining the measurements of the outgoing current phasors 
with the knowledge of power line parameters, such as 
resistance. The major consequence of this measuring capability 
is that for a power system with n buses, a significantly smaller 
number of PMUs is required to be installed in order to ensure 
full observability of the entire power network [10]. For 
example, Brueni et al. presented mathematical proof that for 
power grids with at least 3 buses, no more than n/3 of the buses 
need to be equipped with PMUs to achieve full system 
observability [11]. 

The possibility of using a relatively small number of 
PMUs, combined with the high cost of both PMUs and their 
associated communication infrastructure, is the main driver 
behind the recent and significant research effort in designing 
methods for optimal PMU placement [12]. Various different 
solutions have been proposed in recent years [12]. One of the 
most widely used approaches is Integer Linear Programming 
framework where the topology of the network can be modeled 
and solved using linear constraints [13]-[15]. Integer Quadratic 
Programming approach was used in [16]. A probabilistic 
approach to the OPP was suggested in the work of Aminifar et 
al. [17]. Various nature inspired computational intelligence 
approaches such as Particle Swarm Optimization (PSO) [18], 
Binary PSO [19], Genetic Algorithms (GAs) [20], 
Nondominated Sorting GA [21], Immunity GA [22], Bacterial 
Foraging Algorithm [23], Adaptive Clonal Algorithm [24], 
Tabu Search [25] and Simulated Annealing (SA) [9] have also 
been presented. A distinctly different method of using an 
exhaustive binary search and sequential adding or removing of 
PMUs was proposed in [26], [27]. Prioritization of different 
PMU placement configurations based on multi-criteria decision 
making schemes such as analytic hierarchy processing or a 
simple weighted average was discussed in [28], [29]. Several 
authors also considered multi-staged PMU placement [13], 
[17], [29], [30], [31] placing PMUs with a limited number of 
measurements channels [32], or combining the PMU 
measurements with standard power flow measurements [33]. 

As reviewed above both the global optimization techniques 
such as GA or PSO [18]-[20] and local search techniques such 
as SA and Tabu Search [9], [25] have been previously applied 
to the OPP problem [12]. However, experimental evidence 



suggests that global optimization techniques are sometimes 
unsuitable for fine-tuning of the result close to the optimal 
solution, and local search strategies are prone to convergence 
towards local minima. In order to alleviate these issues, this 
paper proposes to apply Memetic Algorithms (MAs) to the 
problem of OPP. MAs can be seen as a combination of global 
and local search strategies [34], [35]. The main principle 
behind MA is the combination of population-based meta-
heuristic search such as GA with the added capability of 
individual learning [34].  

The specific implementation of MA used for the research 
discussed in this paper combined a GA with the hill-climbing 
local learning strategy. The fitness of each solution is evaluated 
with respect to the requirement of full power grid observability 
and the desire to minimize the size of the set of required 
PMUs. To further prioritize between PMU placement with 
identical number of PMUs, the measurement redundancy index 
(see section IV) was used. 

The implemented solution was applied to the IEEE 14-bus, 
30-bus, 57-bus, and 118-bus test data sets and to a segment of 
the Idaho region power network. The experimental results 
compare the quality of the produced solution to the individual 
GA algorithm solution and to the hill-climbing local search 
solution. It is experimentally demonstrated that the MA 
solution provides fast and stable convergence towards optimal 
PMU placement configurations.  

The rest of the paper is organized as follows. Section II 
reviews the optimal PMU placement problem. The concept of 
MA is outlined in Section III. Section IV presents the 
application of MA to the OPP problem. Finally, experimental 
results are demonstrated in Section V and the paper is 
concluded in Section VI. Appendix Section of this paper 
contains a description of the Idaho region power grid data set. 

II. OPTIMAL PMU PLACEMENT PROBLEM 

This Section provides an overview of the PMU placement 
problem. 

A. Problem Definition 

The power grid is composed of power buses, which are 
voltage step-up and step-down distribution centers and power 
lines which are connections between individual buses. An 
example of a power grid, the IEEE 14-bus test data set is 
depicted in Fig. 1. The topological representation of a grid can 
be encoded using a connectivity matrix A defined as: 
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PMU placement configuration in the power grid is 
determined by a vector x defined as: 
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Using the introduced notation the task of optimal PMU 
placement can be defined as: 

 )(min xwT
 (3) 

Subject to: bxA  (4) 

Here, w is a vector, which expresses the relative cost of 

installing a PMU at particular bus and 
Tb ]11...111[  is an 

observability constraint vector, which ensures that all buses are 
covered by PMU measurements. For simplicity sake the 
relative cost of all buses is considered equal, hence 

Tw ]11...111[ . It is important to note that variable weights of 

individual buses can also be accommodated by the proposed 
solution. 

B. Radial Buses 

Certain problem domain knowledge can be utilized to 
simplify the solution to the OPP problem. A radial bus is a 
power bus, which is connected to the rest of the grid via a 
single power line. An example of a radial bus is bus number 8 
in Fig. 1. From the OPP point of view, the set of radial buses 
can be excluded from the set of candidate buses for PMU 
placement. It is trivial to show that placing a PMU at radial bus 
will always lead to requiring at least as many PMUs than when 
the PMU is placed on the single neighboring power bus of the 
radial bus. Hence, radial buses can be excluded from the set of 
candidate buses for PMU placement. 

C. Zero Injection Buses 

Some power buses are only used as transfer buses and do 
not contain any power injection (e.g. load or generator) into the 
grid. Such buses are called Zero-Injection (ZI) buses and they 
can be used to further reduce the minimal set of installed 
PMUs in order to ensure full system observability. This 
reduction can be accomplished by using Kirchhoff’s Current 
Law (KCL) to indirectly infer the electrical measurements in 
specific configurations. Consider a zero-injection bus with n 
connected power lines. When current measurements are known 
on n-1 power lines, the current on the remaining power line can 
be computed. 

For example, consider bus 7 in Fig. 1, which is a ZI bus. 
Placing a PMU on bus 9 will result in observing the voltage on 
buses 4, 7, 9, 10 and 14 as well as the current on the connecting 
power lines. Because the current is known on 2 out of 3 power 
line connections to bus 7, and bus 7 is a ZI bus, the KCL can 

 
 

Fig. 1 IEEE 14-bus test data set (arrows and circles represent loads and 

generators, respectively). 



be applied to compute the current in the line between buses 7 
and 8 and to indirectly observe the voltage on bus 8. 

III. MEMTIC ALGORITHMS 

This Section first reviews the global optimization using 
Genetic Algorithms, and local optimization using the hill-
climbing method. Next, the idea of Memetic Algorithms is 
discussed. 

A. Genetic Algorithms 

Genetic Algorithms (GA) are part of a broader field of 
evolutionary algorithms. The major unifier of evolutionary 
algorithms is the paradigm of simulated evolution. Simulated 
evolution is inspired by Darwin’s theory of evolution that has 
been translated into an effective tool for global optimization 
[36]. The common underlying idea is that the algorithm 
maintains a set of individuals where each represents an 
encoded solution to the problem. The goodness of each 
individual can be evaluated based on an objective fitness 
function. Parents for the next generation are then selected using 
selection operators. New offspring are produced by 
recombination operators and randomly altered by mutation 
operators. The main cycle is repeated for a specified number of 
iterations or until another convergence criterion is met, such as 
the desired level of the best fitness value or the standard 
deviation of the fitness value within the population. The 
general pseudo-code of GA is summarized in Fig. 2. 

B. Local Search – Hill Climbing 

Unlike the population based genetic algorithm, the hill-
climbing algorithm is a local search technique, which 
maintains a single solution. The main idea of this method is to 
repeatedly attempt to improve the quality or fitness of the 
candidate solution. The hill-climbing algorithm generates a 
new candidate solution from the current solution (e.g. using a 
random bit flip operation). If the fitness of the new solution is 
greater than the fitness of the current solution, the new solution 
is adopted as the current one. In the opposite case, the new 
solution is deleted and a new candidate solution is generated. 
Since the hill-climbing search can move only in the direction 
of increasing fitness value, it is prone to getting trapped in local 
minima. Pseudo code of the hill climbing algorithm is 
summarized in Fig. 3. 

C. Memetic Algorithms 

Memetic Algorithms (MA) can be seen as a combination of 
global and local search strategies. Population based GA are not 
well suited for fine-tuning of a solution, when in the close 
neighborhood of the optimal solution. In contrast, single 
solution based local search is prone to getting trapped in local 
minima when searching far from the global optimum. MA 
combines the advantages of both strategies into a robust 
optimization algorithm with fast convergence. 

The main principle of MA is the combination of 
population-based meta-heuristic search such as GA inspired by 
Darwinian principles of natural evolution and the Dawkins 
principle of memes taken as elementary units of cultural 
evolution capable of individual learning [32]. In one of its 
simplest forms MA combines the population based GA used to 
maintain the population of solutions and to reproduce a new 
generation of individual solutions, with the hill-climbing local 
optimization strategy applied each generation to every 
individual in that generation. Pseudo-code of the MA is 
summarized in Fig. 4. More complex forms of MA use more 
advanced search techniques than simple hill-climbing for local 
search. 

IV. MEMETIC ALGORITHMS FOR OPP 

An MA of the form presented in the previous section was 
applied to the problem of optimal placement of PMUs in the 
power grid. The implemented MA uses a GA to maintain a 
population of PMU placement configurations and to reproduce 
the new generation. For each generation, hill-climbing method 
is used for local learning and fine tuning of each individual 
solution. 

A gene of the GA individual is represented as a binary 
vector similar to the vector x described in (2). A value of 1 
means that a PMU is placed at the particular power bus and a 
value of 0 represents a power bus without an installed PMU. 
As addressed earlier in Section II, knowledge of radial buses is 
used to reduce the dimensionality of the search space. Here, 
radial buses are excluded from the gene of the GA. The GA 
uses tournament offspring selection, two-point cross-over 
operation, and random bit flip mutation. 

After recombination and mutation of the GA population, 
the hill-climbing algorithm is applied to each solution for a 
specified number of iterations. In each iteration, random bit flip 
operation is used to generate a new PMU placement 
configuration, resulting in either adding a new PMU into the 
grid or removing a PMU from the grid. The new solution 
replaces the original solution if the new fitness of the PMU 
placement configuration is better than the original fitness. 

Genetic Algorithm 
1:  Initialize the population with random solutions 
2:  Evaluate population 
3: Repeat until population converged 
 3.1:  Select parents 
 3.2:  Recombine pairs of parents 
 3.3:  Mutate offspring 
 3.4:  Evaluate new population 
 3.5:  Select individuals for new population 

 

Fig. 2 Pseudo-code of the Genetic Algorithm. 

Hill Climbing Algorithm 
1:  Randomly select an initial solution 
2:  Repeat until termination condition 
 2.1: Create new candidate solution 
 2.2:  If (fitness(new) > fitness(current)) Then  
   current = new 
 

Fig. 3 Pseudo-code of the Hill-Climbing algorithm. 

Memetic Algorithm 
1: Initialize the population with random solutions 
2: Optimize each solution using hill climbing 
3: Evaluate population 
4: Repeat until population converged 
 4.1: Select parents 
 4.2: Recombine pairs of parents 
 4.3: Mutate offspring 
 4.4: Optimize each solution using hill climbing 
 4.5: Evaluate new population 

4.6: Select individuals for new population 
 

Fig. 4 Pseudo-code of the Memetic Algorithm. 



The fitness of each candidate solution, which is to be 
minimized, is evaluated with respect to ensuring the desired 
full observability of the power grid and with respect to 
minimizing number of PMUs needed. The fitness value F(x) of 
particular solution x can be calculated as follows: 
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Here, NPMU stands for the number of installed PMUs, 
NBUS is the number of power buses in the grid, NObserv 
expresses the number of power buses that are currently 
observed, and RI is the measurement redundancy index of the 
current PMU placement configuration. RI value can be 
computed as follows: 
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Redundancy index expresses the average number of PMU 
measurements per bus. As an example consider a simple power 
grid depicted in Fig. 5 with two PMU placement configurations 
depicted in Fig. 5(a) and Fig. 5(b). The RI for these two 
configurations is 1.33 and 1.00, respectively. Hence, despite 
using 2 PMUs and providing full-network observability in both 
cases, the configuration in Fig. 5(a) also offers increased 
measurement redundancy and should be preferred during the 
design process. It is important to note that the value of RI will 
always be greater than 0 and, for all tested power grid data sets, 
it was also found to be less than 1. This is primarily due to the 
fact that only coverage of directly incident PMU is considered 
in (6), while further indirect measurements (e.g. the zero-
injection buses) are considered in assessing the full system 
observability. 

Calculation of the fitness function can be explained as 
follows. When a solution provides full network observability 
the fitness value is primarily controlled by the number of 
PMUs installed. Hence, a solution with smaller number of 
PMUs will be preferred. In most power grid configurations it is 
possible to obtain several different configurations with the 
minimal number of PMUs. In such cases, the solution, which 

provides the maximum degree of measurement redundancy is 
preferred according to the RI value. Again, note here that RI is 
typically between 0 and 1. The higher the RI value the more 
information about the state of the power grid can be retained 
should a PMU malfunction. 

In cases when the candidate solution does not provide full 
grid observability, the fitness value is penalized by adding the 
number of power buses. Hence, any solution which does not 
guarantee full grid observability will be worse than any 
solution that does provide full observability of the network. 
However, to further guide the search algorithm towards the 
desired solution, the PMU placements that do not provide full 
observability but cover larger portions of the power grid are 
preferred. 

V. EXPERIMENTAL RESULTS 

This Section describes experimental test cases, followed by 
the experimental results. 

A. Test Cases 

The implemented MA was applied to the standard set of 
IEEE bus test systems. Namely, the IEEE 14-bus, 30-bus, 57-
bus and 118-bus system were used. For these systems the 
knowledge of Zero-Injection (ZI) buses was used to derive 
indirect measurements in the power grid. Locations of ZI were 
adapted from [37] and for clarity they are summarized in Table 
I. 

In addition, a power network data set extracted from a 
segment of the Idaho region power network was used. This 
Idaho region data set is composed of 89 buses and 124 power 
lines. For this data set, the knowledge of ZI buses was not 
available and thus the propagation of indirect measurements 
due to ZI buses was not used. Hence, all power buses are 
considered to have either a generator or a load. A view of the 
Idaho region power network is depicted in Fig. 6. Connections 
of the Idaho region data set are provided in Appendix A. 

   
 (a) (b) 

Fig. 5 Demonstration of measurements redundancy index. 

 
Fig. 6 The Idaho region power grid data set. 

TABLE I 
DATA SET DESCRIPTION FOR IEEE TEST CASES 

Test Case
 Number 

of Lines 

Number of 

ZI buses 
Location of ZI buses 

14-bus 20 1 7 

30-bus 41 5 6, 9, 25, 27, 28 

57-bus 78 15 
4, 7, 11, 21, 22, 24, 26, 34, 

36, 37, 39, 40, 45, 46, 48 

118-bus 179 10 
5, 9, 30, 37, 38, 63, 64, 68, 

71, 81 

 



B. Experimental Testing 

As mentioned in Section IV, the implemented MA 
combines the GA with the hill-climbing local learning strategy. 
Performance of the proposed MA solution was experimentally 
compared to solutions using only GA and using only hill-
climbing. 

Implementation details of the GA are as follows. The 
population consisted of 100 individuals and the optimization 
was terminated after 100 iterations. Two-point cross-over and a 
random bit-flip mutation operators were used with a mutation 
rate set at 0.2. Tournament selection was used for parent 
selection with tournament size of 4. 

Finally, the hill-climbing only algorithm used a random bit-
flip mutation operator to generate new solutions and it was 
allowed 10000 iterations to converge. The above mentioned 
algorithm parameters were empirically selected based on 
extensive experimental testing. Initial solutions for all methods 
were randomly initialized in the solution space. 

First, the MA was used to search for the solution to the 
OPP problem, which yields the minimum number of required 
PMUs and a maximum measurement redundancy index. Table 
II summarizes the number of required PMUs, the measurement 
redundancy index and the list of PMU locations for the test 
cases used. By comparing the results achieved on the IEEE test 
sets in terms of the number of required PMUs to the available 
literature it can be concluded that the proposed solution is 
capable of locating the optimal solution [37]. 

Next the performance of MA was statistically compared to 
GA and hill-climbing. The statistical comparison of the 
performance of individual algorithms is necessary due to the 
stochastic nature of the algorithms. Each algorithm was applied 
to all test data sets 50 times, then the average and the standard 
deviation of the number of required PMUs was computed. 
Running each algorithm 50 times was considered as a 
reasonable compromise between the required computational 
time and the statistical significance of the result (Table III). 

It can be observed that the MA solution provides the best 
results with the smallest standard deviation, followed by the 
population based GA and the hill-climbing local search 
technique (see Table III). To further illustrate these results Fig. 
7 depicts the distribution of the number of PMUs NPMU for the 
performed 50 runs of the MA, GA and hill-climbing algorithms 
applied to the IEEE 118-bus data set. These results confirm 
that the MA based solutions are more stable compared to GA 
based solutions and hill-climbing based solutions. 

TABLE II 

BEST OPP SOLUTION USING MA 

Test Case
 Number 

of PMUs 
RI Location of PMUs 

14-bus 3 0.300 2, 6, 9 

30-bus 7 0.354 2, 4, 10, 12, 15, 20, 27 

57-bus 12 0.256 1, 4, 9, 15, 20, 25, 29, 32, 47, 51, 54, 56 

118-bus 29 0.360 
3, 8, 11, 12, 17, 21, 27, 31, 32, 34, 37, 
42, 45, 49, 53, 56, 59, 66, 72, 75, 77, 

80, 85, 86, 90, 94, 101, 105, 110 

Idaho State 27 0.419 

2, 5, 9, 15, 17, 20, 22, 27, 30, 32, 36, 

41, 43, 45, 49,  52, 55, 56, 61, 64, 67, 
69, 73, 76, 81, 86, 88 

 
TABLE III 

STATISTICAL COMPARISON OF THE OPP ALGORITHMS 

Test Case
 

Memetic Algorithm Genetic Algorithm Hill-Climbing 

14-bus 3.00  0.00 3.10  0.30 3.48  0.50 

30-bus 7.00  0.00 7.10  0.30 7.40  0.60 

57-bus 12.36  0.48 14.42  0.94 15.08  1.11 

118-bus 30.52  0.85 33.28  1.41 36.16  2.03 

Idaho State 27.52  0.61 29.08  1.15 31.44  2.04 

 

 
Fig. 7 Distribution of the number required PMUs for IEEE-118bus problem 

for 50 runs of the algorithms 

 
 (a) (b) (c) 

 
 (d) (e) 

Fig. 8 Comparison of the convergence of the MA and GA for IEEE 14-bus (a), 30-bus (b), 57-bus (c), 118-bus (d) and Idaho State (e) data sets. 



One of the most recognized advantages of MAs when 
compared to other techniques is their high convergence speed. 
To verify the convergence improvements, the MA and the GA 
have been both applied to the IEEE test data sets 20 times and 
the average fitness of the best solution at each generation was 
computed. Fig. 8 shows the obtained results, which clearly 
demonstrate the increased convergence rate of the MA. 

Finally, it is interesting to investigate how much does the 
amount of local solution learning during each generation of 
MA contribute to the improved performance and convergence 
speed of the MA. To investigate this behavior, MA was applied 
to the IEEE 118-bus test data set with varying number of hill-
climbing iterations per each individual in each generation. The 
number of hill-climbing iterations was varied from 0 to 20, 
where 0 is equal to using a GA without any hill-climbing. For 
each value of the number of hill-climbing iterations the number 
of PMUs in the produced OPP solution was averaged over 50 
runs of the algorithm. The results are depicted in Fig. 9. It can 
be seen that the first 10 hill-climbing iterations provided 

significant improvement in the average best fitness value, 
while additional local learning iterations provided only minor 
improvements. 

VI. CONCLUSIONS 

This paper addressed the problem of Optimal Placement of 
PMUs (OPP), which consists of locating a minimal set of 
power buses where PMUs must be placed in order to provide 
full system observability. A novel solution to the OPP problem 
via Memetic Algorithms (MA) was proposed. The 
implemented MA combines the global optimization power of 
GAs with local solution tuning using the hill-climbing method.  

The performance of the proposed MA based approach was 
demonstrated on IEEE benchmark power networks and on a 
segment of the Idaho region power network. It was 
experimentally shown that the MA provides faster and more 
stable convergence towards the optimal solution. 

Future work entails further exploration of advantages and 
disadvantages of utilizing MA for OPP and applying the 
proposed solution to larger real-world power grids. The 
proposed MA will be further advanced by utilizing more 
complex local search techniques. Finally, the utilized fitness 
function can be improved to express more detailed 
requirements. 

APPENDIX A – IDAHO REGION POWER GRID DATASET 

This appendix contains a description of the created Idaho 
region power grid data set. This data set is composed of 89 
power buses and 124 power lines. Table IV contains the list of 
connections of all power buses. 

 
Fig. 9 Average best fitness of the MA as a function of the number of local 

learning iterations. 

TABLE IV 

BUS CONNECTIONS FOR THE IDAHO REGION POWER GRID 

Bus No.
 

Connected Buses  Bus No.
 

Connected Buses  Bus No.
 

Connected Buses
 

1 2,10  31 30,33  61 53,58,59,60,62 

2 1,3,4,6,88  32 33,32  62 61,63 

3 2,5  33 27,31,32  63 60,62,64,69 

4 2,5  34 27,39  64 63,65,66 

5 3,4,6,7,8,11,26,86  35 27,36  65 64,68 

6 2,5,8  36 28,35  66 64,67,75 

7 5  37 27  67 66,71,78 

8 5,6,9  38 32,42  68 53,65,69 

9 8,10,13  39 34,43  69 63,68,70,71 

10 1,9  40 41  70 69 

11 5,12,16,20  41 40,42,43  71 67,69,72,74 

12 11,13,17  42 38,41,45  72 71,73 

13 9,12,14  43 39,41,44,45  73 72,74 

14 13,15  44 43  74 71,73 

15 14,16  45 42,43,46,48,50  75 66,76 

16 11,15,19  46 45  76 75,77 

17 12,18,19  47 49  77 76,79 

18 17,22  48 45,50,53  78 67,79 

19 16,17  49 47,50,55  79 77,78,80,81,86 

20 11,21,26,27  50 45,48,49,51,55  80 7,81,82 

21 20  51 50,52  81 79,80,82,83,84 

22 18,23,24,27  52 51,53  82 80,81 

23 22,24  53 48,52,61,68  83 81,85,86 

24 22,23  54 55  84 81,86 

25 26,27  55 49,50,54,56  85 83,86,87 

26 5,20,25,27  56 55,57,59  86 5,79,81,83,84,85,88 

27 20,22,25,26,28,33,34,35,37  57 56,58  87 85,88 

28 27,36  58 57,61  88 2,86,87,89 

29 30  59 56,60,61  89 88 

30 29,31  60 60,61,63    
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