
Vulnerability Identification and Classification Via

Text Mining Bug Databases

Dumidu Wijayasekara, Milos Manic

University of Idaho

Idaho Falls, ID, USA

dumidu.wijayasekara@gmail.com, misko@ieee.org

Miles McQueen

Idaho National Laboratory

Idaho Falls, ID, USA

miles.mcqueen@inl.gov

Abstract—As critical and sensitive systems increasingly rely

on complex software systems, identifying software vulnerabilities

is becoming increasingly important. It has been suggested in

previous work that some bugs are only identified as

vulnerabilities long after the bug has been made public. These

bugs are known as Hidden Impact Bugs (HIBs). This paper

presents a hidden impact bug identification methodology by

means of text mining bug databases. The presented methodology

utilizes the textual description of the bug report for extracting

textual information. The text mining process extracts syntactical

information of the bug reports and compresses the information

for easier manipulation. The compressed information is then

utilized to generate a feature vector that is presented to a

classifier. The proposed methodology was tested on Linux

vulnerabilities that were discovered in the time period from 2006

to 2011. Three different classifiers were tested and 28% to 88%

of the hidden impact bugs were identified correctly by using the

textual information from the bug descriptions alone. Further

analysis of the Bayesian detection rate showed the applicability of

the presented method according to the requirements of a

development team.

Keywords— hidden impact bugs; bug database mining;

vulnerability discovery; text mining; classification

I. INTRODUCTION

Vulnerabilities in software have always been an important
security focus. As control and monitoring systems become
dependent on complex software, discovering these software
vulnerabilities as early as possible is extremely important.
Early identification of vulnerabilities will minimize the time in
which the vulnerabilities expose the systems to attack.

Industrial software systems that control and monitor critical
and sensitive infrastructure such as the power grid and
manufacturing plants are becoming increasingly dependent on
complex software systems and communications [1], [2].
Furthermore, as systems become more complex the number of
vulnerabilities also increases [3]. While network
communication related vulnerabilities are important [4], it has
been shown that a significant portion of the vulnerabilities exist
in applications and therefore a significant portion of attacks are
aimed at the application layer [5], [6].

Hidden Impact Bugs (HIBs) can be defined as
vulnerabilities identified as such only after the related bug had
been disclosed to the public [7], [8]. These software bugs are
disclosed to the public via bug databases and bug fixes, before
being identified as having a high security impact and being
labeled as vulnerabilities. Thus, even though a bug is known to
the community it may not be as quickly fixed by developers,
and a fix may not be applied in an appropriately timely fashion
by end-users, because the security implication of the bug has
not been correctly identified.

It was shown in [8] that a significant portion (32% for
Linux and 62% for MySQL) of discovered software
vulnerabilities was initially reported as HIBs. It was also
shown in [8] that the percentage of HIBs has increased in
recent years. Thus, a methodology that identifies these HIBs as
they are reported to bug databases will reduce the time critical
systems are exposed to these vulnerabilities.

This paper presents a software vulnerability identification
methodology using HIBs, that utilizes the textual description of
the bugs that were reported to publically available bug
databases. The presented methodology utilizes text mining
techniques to 1) extract syntactical information of bug reports,
2) compress the information for easier manipulation, and 3) use
this information to generate a feature vector which is used for
classification. Thus, the presented system is intended to
classify bugs as potential vulnerabilities as they are being
reported to bug databases, thereby reducing the time software
is exposed to attack through the vulnerability.

The presented methodology was tested on Linux bug
reports that were reported to the Redhat Bugzilla bug database
[9] within the time period from January 2006 to April 2011,
and Linux kernel vulnerabilities that were reported in the
MITRE CVE [10] database during the same time period. Using
the presented text mining steps, a feature vector was generated
and different classifiers were used to classify HIBs and regular
bugs. Three different commonly used classifiers were used for
the classification and 28% to 88% of the HIBs were identified
correctly. An evaluation of the classifiers over time, based on
the data available at a given time was performed to investigate
the usability of such classifiers in real world scenarios. An
analysis utilizing the Bayesian detection rate of the classifiers
was also performed to further investigate the classification
accuracy and the affect of false positives for vulnerability
detection.

This manuscript has been authored by Battelle Energy Alliance, LLC

under Contract No. DE-AC07-05ID14517 with the U. S. Department of
Energy. The United States Government retains a nonexclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the published form of

this manuscript, or allow others to do so, for United States Government

purposes.

The rest of the paper is organized as follows. Section II
briefly discusses related work in the area. Section III elaborates
the proposed vulnerability identification methodology and the
text mining process involved. Section IV discusses the
experimental setup used in this paper in detail. Finally section
V discusses the experimental results and section VI concludes
the paper.

II. RELATED WORK

Bug databases are used by software developers to identify
and keep track of information about software bugs that were
not identified at the time of software release. Developers will
utilize these bug reports for different purposes such as
improving reliability and improving future requirements [11],
[12]. Publically available bug databases enable users to report
bugs as they encounter it and search the bug database for bugs
they might encounter in the future [13]. Bug databases also
keep track of the fixes being released for different bugs and
what stage of the resolution process a bug is in. Because
different entities with different levels of expertise and
requirements report bugs to these databases, the information
contained in bug reports is highly noisy and not in standard
form [8], [14], [15]. However, this information has been
successfully used for various classification purposes [11], [14],
[15], [16].

Detection of duplicate bug reports using textual data of bug
reports were explored in [17], [18]. A tool for identifying
duplicate bug reports in Apache, Eclipse and Linux bug
databases was proposed by Wu et al. in [19].

In [14] and [15] Lamkanfi et al. used the textual description
of bug reports to classify severity of bugs. In [15] classification
algorithms such as Naïve Bayes and Naïve Bayes Multinomial
were compared for classifying Eclipse and GNOME bug
reports.

Software vulnerability discovery is largely focused on
source code analysis. In [20] the authors used machine learning
and text mining to analyze the source code to identify
vulnerabilities. However, the results were below expectations.
Similar work was done in [21] to predict defect-proneness in
software. A text mining based approach that analyzes source
code was explored to identify mobile device vulnerabilities in
[22].

Several commercially available tools for vulnerability
identification rely on static code analysis. However, it has been
suggested that these tools as well as free tools may have high
false positive rates [23]. Furthermore, it has been shown that in
order to achieve realistic prediction rates, either multiple static
analysis tools must be used or significant manual adjustment of
these tools is required [23].

III. HIDDEN IMPACT BUGS CLASSIFICATION METHODOLOGY

As mentioned earlier, previous work has shown that a
significant portion of vulnerabilities are only identified as such
after they have been publically disclosed [7], [8]. Thus,
although some vulnerabilities were identified as bugs in the
code at an earlier time, the actual security impact of these bugs
were not detected till later. Therefore, this paper proposes a
methodology that utilizes information in bug reports to identify

vulnerabilities as they are reported to bug databases. This
section will first elaborate on the overall classification process
and then discuss the text mining techniques used in detail.

A. The classification process

The presented methodology utilizes the textual description
of reported bugs to generate a unique feature vector that will be
used by a classifier. The classifier will classify reported bugs as
potential vulnerabilities or regular bugs. Fig. 1 illustrates the
classification process. The overall process can be separated
into four major steps.

In Step 1 (Fig. 1) the short and long descriptions of the bug
report is extracted. The short description is a title provided by
the reporter that is around 5-10 words in length. The long
description is a more detailed description of the bug which may
include how to recreate it, code snippets, memory dumps, etc.

In Step 2, the most important and recurring syntactical
information is extracted from the short and long descriptions of
the bugs. This is performed via text mining techniques which
will be discussed later in Section II.B. The syntactical
information is extracted in the form of single unique words
known as keywords. The extraction process removes words
and symbols that might not carry a significant amount of
information, and only extracts single words.

In Step 3, compression of this extracted information is
performed. Text mining techniques are used in this step to
identify words that may carry similar information and combine
them. This step reduces the feature space which decreases the
resource utilization of the process. This step also counts the
number of bugs each keyword has appeared in and identifies
the most frequently used keywords in the bug descriptions.

Fig. 1. Identification methodology of vulnerabilities using bug reports

Finally, in Step 4, extracted set of keywords are used to
create a feature space for the bug descriptions. Each dimension
of the feature space consists of a set of words that carry similar
information. This feature vector can be used by a classifier to
perform the final classification. Thus the classifier will classify
a given bug as a potential HIB or a regular bug.

B. Text mining process

This section explains the main text mining steps (Step 2
and Step 3) in detail. Step 2 and Step 3 consist of three
different stages each.

The first main step of the text mining process is extracting
syntactical information (Step 2 in Figure 1). The syntactical
information of a textual document can be represented as a bag-
of-words where we store the number of times each unique
keyword (term) is found in a bug report. This representation is
also known as the term frequency representation [24]. Thus a
document Di containing n unique words can be represented as:

 },....,,{ 21 iniii tttD

where, tij is the number of times term tj appeared in document i.
As the name suggests the bag-of-words representation only
takes into account words and disregards numbers and special
characters in the text. This is because numbers and special
characters carry very little to no information when taken out of
context. Similarly, the cases (upper and lower) of the letters in
words are also disregarded for the same reason.

Furthermore, frequently occurring words in English
language, known as stop words, are also removed from the
bag-of-words representation. These words include Pronouns
such as: “I, he, she”, Articles such as: “a, an, the”, Prepositions
such as: “after, to, but”, Conjunctions such as: “and, but,
when”, and other frequently appearing words. Such words also
carry very little to no information when taken out of context,
and are therefore disregarded.

In order to successfully capture all the information in a set
of N documents, the term frequency of all M unique words in
the set of N documents must be used. Thus the syntactical
information of N documents with M unique words can be
expressed using a MN matrix:

},....,,{

....

},....,,{

21

112111

NMNNN

M

tttD

tttD

TDM

This MN matrix is called the Term-Document Matrix

(TDM).

The main problem faced when using the TDM is, as the
number of documents (N) increases, the number of unique
words (M) also increases. This results in a large matrix which
leads to increased resource usage and higher computational
times. Since many of the unique words might not appear in
most of the documents, the TDM can be extremely sparse as
well.

In order to alleviate these problems and better represent the
information in textual documents, further text mining
techniques were applied to the problem discussed in this paper.
These techniques reduce the dimensionality, M of the TDM by
combining words that carry similar information and further
removing words that carry little information. This is the second
main step of the text mining process, which is compression of
the extracted syntactical information (Step 3 in Fig. 1).

The compression step consists of three sequential stages.
The first stage of compression is identifying and combining
synonyms. Synonyms are words that have the same meaning or
nearly the same meaning as another word. Thus identifying and
combining synonyms leads to a reduced dimensionality with
very little loss of information. In this paper, the English word
database Wordnet [25] was used to identify synonyms. After
synonyms are identified, they can be combined to form a single
dimension in the TDM. Since similar words are combined to
form one dimension, each dimension mi in the TDM can be
represented as a set of r keywords, where the keyword set mi
can be represented as:

 },....,,{ 21 iriii aaam

where aik is the k
th

 word in the dimension mi. Before identifying
synonyms the number of words in each dimension, r is 1 for all
dimensions.

Let “word a is a synonym of word b” be represented as
ba , then, for the two keyword sets mi and mj represented by:

 },....,,{ 21 iAiii aaam

 },....,,{ 21 jBjjj bbbm

 lkabbaanyifmm ikjljlikji ,

Furthermore, if mi = mj :

 jiji mmsynm ,)(

and mi and mj is deleted from the TDM and m(syn)i,j is added to
the TDM.

This process is iterated over the complete set of identified
words M in the TDM, until there are no more dimensions that
satisfy mi = mj.

After this process the dimensionality of the TDM, M is
reduced to M’:

 synMM '

where:

 0)1(
1

q

M

i

i qqsyn

where, M is the dimensionality of the TDM and ri is the
number of keywords of each keyword set.

Thus, the use of synonyms effectively reduces the
dimensionality of the TDM. Since synonyms are words that
carry similar information, the loss of information of this
process is minimal.

The second stage in the compression step (Step 3, Fig. 1) of
the text mining process is deconstructing words into their base
forms and combining similar words. The deconstruction of
words into their base form is known as stemming. The specific
stemming algorithm used in this paper is called Porter
stemming [26]. Stemming is capable of deconstructing words
that have been transformed, for example by pluralizing or by
adding a gerund, into their basic form. This enables
identification of transformed words as similar to their base
words.

The process of indentifying similar stemmed words and
combining them is similar to the process described above for
synonyms. Therefore as with identifying and combining
synonyms, the dimensionality of the TDM is reduced with
minimal loss of information.

The third and final stage of the compression step is
identifying the most frequently used keyword sets in the TDM.
This is done by counting the number of documents each
keyword set appears in, and selecting the keyword sets which
appear most often in documents. Typically keyword sets that
appear in less than P% of the documents are discarded.
Although this type of threshold selection reduces the
dimensionality of the TDM significantly and identifies words
that are most general to the document set, it may also remove
words that are important to the classification and retain words
that may not contribute to the classification.

IV. EXPERIMENTAL SETUP

This section explains in detail the experimental setup that
was used to test the presented vulnerability classification
methodology. The presented methodology was tested on a set
of bug reports and HIBs for the Linux kernel that were reported
in the time period from January 2006 to April 2011.

A. Vulnerability and Bug Databases used

For this paper the MITRE CVE vulnerability database [10]
was used to identify HIBs for the Linux kernel. The Redhat
Bugzilla bug database [9] was used as the bug database. All the

bugs and vulnerabilities explored in this paper are within the
time period from January 2006 to April 2011.

In order to identify vulnerabilities that are most applicable
and most relevant, only vulnerabilities that affected 1) multiple
processors, 2) multiple distributions and 3) Linux kernel 2.6
and above, were considered in this paper. HIBs were identified
as vulnerabilities that had at least 2 weeks of impact delay,
where the impact delay was defined as the time from the public
disclosure of the bug via a patch to the time a CVE was
assigned to the vulnerability in the MITRE database.

Out of the Linux kernel vulnerabilities reported from
January 2006 to April 2011 in the MITRE CVE database, 403
vulnerabilities were identified as most relevant using the rules
mentioned above. Out of these 129 (39%) showed an impact
delay of at least 2 weeks [8]. Unfortunately, out of the 129
HIBs identified, only 73 had accessible bug reports in the
Redhat Bugzilla bug database.

As of 2011-4-30 the Redhat Bugzilla database contained
202,896 entries. Table I shows the distribution of bugs per year
and the mean number of bugs reported per day each year in the
Redhat Bugzilla bug database. The “Other Unknown” bugs in
Table I refer to bugs that were not considered due to no report
date, no textual descriptions or due to denied access.

B. Classification subset

In order to test the presented vulnerability classification
methodology, a set of Redhat Linux bugs, containing two
classes: regular bugs and HIBs were constructed.

The MITRE CVE vulnerability database reports the bugs
associated with each vulnerability. This information was used
to extract bugs in the Redhat Bugzilla bug database that were
associated with the identified vulnerabilities. Therefore for the
final classification and testing the set of 73 identified HIBs that
had accessible bug reports in the Redhat Bugzilla bug database
were used. These bugs constitute the HIB class.

The regular bug class contained 6000 randomly selected
bugs reported from January 2006 to April 2011 that were not
identified as vulnerabilities. Since the number of bugs reported
per each year is different for each year (see Table I), in order to
avoid misrepresenting any year, the random set was
constructed to reflect proportion of bugs reported for each year.
However, it is important to note that the regular bug class may
contain bugs that are yet to be identified as vulnerabilities, and
the classifiers may be negatively affected by training on these
examples.

TABLE I. NUMBER OF BUGS REPORTED PER YEAR IN THE REDHAT

BUGZILLA [9] DATABASE

Year
Number of bug

reports

Average number of

bugs reported per

day

Prior to 2006 59,819 22.9
2006 15,249 41.8

2007 17,217 47.2

2008 20,817 57.0
2009 26,950 73.8

2010 43,120 118.1

2011 (to April) 17,616 146.8
Other unknown 2108 -

Total 202.896 44.3

TABLE II. NUMBER OF SELECTED REGULAR BUGS AND HIDDEN IMPACT

BUGS FROM EACH YEAR

Year
Number of

regular bugs

Number of hidden

impact bugs found

2006 642 3
2007 725 12

2008 876 21

2009 1135 10
2010 1,819 25

2011 (to April) 803 2

Total 6000 73

Table II shows the number of HIBs that were identified for
each year and the number of regular bugs selected from each
year for the classification process.

C. Construction of TDM

The Term-Document Matrix (TDM) was constructed using
the short and long descriptions of the bug reports. The short
and long descriptions of the bugs were treated separately,
meaning the text mining process was applied to words
extracted from the short description and the long description
separately. This is because a word in the short description may
carry different information compared to the same word in the
long description.

The percentages P for selecting the keywords appearing
most frequently in bug reports were set at PSDESC = 1% and
PLDESC = 3%. These numbers were selected somewhat
arbitrarily and the same thresholds were used to test each
classifier. Although this type of selection is sub-optimal for
classification, it is sufficient for demonstrating the vulnerability
classification methodology described in this paper.

D. Classifiers tested

Three different classifiers were tested on the textual
information extracted from bug reports: 1) Naïve Bayes (NB),
2) Naïve Bayes Multinomial (NBM), and 3) Decision Tree
(DT). These classifiers were chosen because of their high
interpretability, fast learning phase and capability of classifying
highly multi dimensional data. The selected classifiers will
classify a given bug as an HIB or regular bug.

NB [27] and NBM [28] use the Bayes theorem of
conditional probability to calculate the conditional probability
of a class given a set of keywords. The NB classifier only
considers the presence or absence of a keyword in a document,

whereas the NBM classifier considers the number of times
each keyword occurred in each document [28]. DT use
information entropy and information gain of each dimension to
generate a set of optimal dimensions to classify the dataset on.
The particular version of DT used in this paper, called C4.5
[29], also incorporates heuristic methodologies to reduce the
number of nodes in the final tree.

V. EXPERIMENTAL RESULTS

The classification was performed using 10-fold cross
validation. Classification results are shown in terms of True
Positives (TP) and True Negatives (TN) as shown in Table III.

The overall classification results are shown in Table IV.
Naïve Bayes classifier showed the best TP rate (88%),
however, the TN rate was low. Similarly the decision tree had a
very low TP rate (28%) but the highest TN rate (99%). Naïve
Bayes Multinomial showed a higher TP rate as well as higher
TN rate. Although these results may be relatively low, even the
lowest TP rate (28%) is far better than a random guess (1.2%).

According to Table II, the number of reported bugs and the
number of identified vulnerabilities have been increasing each
year. In order to evaluate the usability of the classifiers in this
real world scenario, the performance of each classifier was
measured across time, based on the data available at a given
moment in time. For this analysis, cumulative bugs reported
and HIBS found at the start of each year was selected (Table
II).

Figs. 2, 3 and 4 plot the yearly classification results for
Naïve Bayes, Naïve Bayes Multinomial and Decision Tree
classifiers respectively. As expected, the TP rate increases with
time. This is because the size of the HIB set is increasing.
Therefore, as more HIBs are correctly classified as
vulnerabilities, the classifiers are able to adapt to the new data
and benefit from these newly discovered HIBs.

Since the size of the Regular bug set is very large compared
to the HIB set (6000 vs. 73), even a low rate of FP may result
in an overwhelming amount of bugs incorrectly classified as
HIBs. In order to identify this problem, Bayesian detection rate
is used which is the probability that an instance classified as
true, is actually true [30]. Thus, a higher Bayesian detection
rate means that a lower percentage of regular bugs were
improperly classified as vulnerabilities and therefore a software
maintenance team will have to sort through fewer regular bugs
to find those which are actual vulnerabilities. Therefore, a
higher Bayesian detection rate is preferred. The Bayesian
detection rate can be calculated using the following equation:

)(FPTP

TP
RateDetectionayesianB

Furthermore, using the average number of bugs reported
per day, the number of bugs that will be classified as HIBs by
the classifier can be calculated as:

 Dayper Reported Bugs
FNTNFPTP

FPTP

)(

TABLE IV. CLASSIFICATION RESULTS FOR THE CLASSIFIERS TESTED

Classifier TP Rate TN Rate

Naïve Bayes (NB) 0.88 0.46

Naïve Bayes Multinomial (NBM) 0.78 0.90

Decision Tree (DT) 0.28 0.99

TABLE V. BAYESIAN DETECTION RATE OF THE CLASSIFIERS TESTED

Classifier
Bayesian
Detection

Rate

Number of

Bugs
Classified

Per Day

(2011)

Naïve Bayes (NB) 0.02 80.3
Naïve Bayes Multinomial (NBM) 0.09 16.5

Decision Tree (DT) 0.40 1.2

TABLE III. CONFUSION MATRIX

 Classified as

 HIB Regular

A
ct

u
al

C
la

ss
 HIB

True Positives
(TP)

False Negatives
(FN)

Regular
False Positives

(FP)

True Negatives

(TN)

The Bayesian detection rate and the number of bugs that
will be classified as HIBs by each classifier for a given day in
2011 is shown in Table V. These results show that although the
DT had a low TP rate more than a third of bugs that are
classified as vulnerabilities are actual vulnerabilities. This also
leads to less than 2 bugs being classified as vulnerabilities each
day in 2011 where over 145 bugs were reported to the bug
database each day (see Table I).

Similarly, NBM classifier reported a Bayesian detection
rate of 0.09, which means that just under one out of 10 bugs
that are classified as a vulnerability is an actual vulnerability.
Due to the very high FP rate of the NB classifier, only 1 out of
50 bugs that are classified as vulnerabilities are actual
vulnerabilities.

The experimental results show that the tested classifiers
were capable of identifying HIBs in the Linux bug database
using the textual information stored in the bug reports.
Although the classification accuracy was relatively low, it was
shown to be at least an order of magnitude better than a
random guess. Furthermore, as mentioned above, the regular
bug set may contain HIBs that are yet to be correctly identified

as vulnerabilities. These HIBs may be contained in the false
positives of the classifiers.

It should be understood that the number of keywords in the
final TDM play an important role in the classification results.
Although the tests presented in this paper were carried out
using the same set of keywords for each classifier, some
classifiers may produce better results for different sets of
keywords. Furthermore, important keywords that contribute to
the classification may not be included when the final TDM is
generated.

VI. CONCLUSION

This paper presented a methodology for identifying
vulnerabilities in software systems for Hidden Impact Bugs
(HIBs) using textual information from publically available bug
databases. The presented methodology uses text-mining
techniques to extract syntactical information from bug reports,
and generate a feature vector that can be used by classification
algorithms. Naïve Bayes, Naïve Bayes multinomial, and
Decision tree classification was tested on a set of bugs
extracted from the Redhat Bugzilla bug database and HIBs
identified for the Linux Kernel. The tested classifiers were able
to correctly classify 28% to 88% of the HIBs.

An analysis of the classifiers over time using the
cumulative data gathered up to that time showed the ability of
the classifiers to adapt to new data as well as the real world
usability of such a classification methodology. Further analysis
on the Bayesian detection rate of the classifiers showed that the
number of bugs that will be classified as vulnerabilities per day
given the results of each classifier (from less than 2 to over 80).
This information can be used by developers to select the
optimal classifier, given the number of bugs that can be
handled by a software maintenance team.

As future work the feature extraction process will be
enhanced to incorporate information from already identified
HIBs. Further improvements can be achieved by identifying
keywords that contribute to the classification more and
including these dimensions in the feature vector. Multiple
classifiers will be used in series or parallel to further increase
the classification accuracy. The feature vector can be enhanced

Fig. 2. Classification results for Naïve Bayes Classifier

Fig. 3. Classification results for Naïve Bayes Multinomial Classifier

Fig. 4. Classification results for Decision Tree Classifier

by incorporating other dimensions of the bug reports and
attributes of the source code itself and other aspects of the
software development process.

REFERENCES

[1] M. McQueen, “Software and human vulnerabilities,” in Proc. IEEE. Int.

Conf. of the Industrial Electronics Society, (IECON), pp. 1-85, Nov.
2010.

[2] C. Neureiter, G. Eibl, A. Veichtlbauer, D. Engel, “Towards a framework
for engineering smart-grid-specific privacy requirements,” in Proc.
IEEE. Int. Conf. of the Industrial Electronics Society, (IECON), pp.
4803-4808, Nov. 2013.

[3] H. Isakovic, A. Wasicek, “Secure channels in an integrated MPSoC
architecture,” in Proc. IEEE. Int. Conf. of the Industrial Electronics
Society, (IECON), pp. 4488-4493, Nov. 2013.

[4] N. Moreira, A. Astarloa, U. Kretzschmar, “SHA-3 based Message
Authentication Codes to secure IEEE 1588 synchronization systems,” in
Proc. IEEE. Int. Conf. of the Industrial Electronics Society, (IECON),
pp. 2323-2328, Nov. 2013.

[5] Veracode. (Apr 8, 2013). State of Software Security Report Volume 5.
[Online], Avalable: http://www.veracode.com/resources/state-of-
software-security.

[6] Cenzic. (2014). Application Vulnerability Trends Report. [Online],
Available:http://www.cenzic.com/downloads/Cenzic_Vulnerability_Rep
ort_2014.pdf

[7] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, A.
Kaseorg, “Security Impact Ratings Considered Harmful,” in Proc. of the
12th Conf. on Hot Topics in Operating Systems, (USENIX), May 2009.

[8] D. Wijayasekara, M. Manic, J. L. Wright, M. McQueen "Mining Bug
Databases for Unidentified Software Vulnerabilities," in Proc of the 5th
Intl. IEEE Intl. Conf. on Human System Interaction, (HSI), June, 2012.

[9] Redhat, Inc. (1 May 2014), Redhat Bugzilla Main Page [Online].
Available: https://bugzilla.redhat.com/.

[10] The MITRE Corporation (1 May 2014), Common Vulnerabilities and
Exposures (CVE) [Online]. Available: http://cve.mitre.org/.

[11] A. J. Ko, B. A. Myers, D. H. Chau, “A Linguistic Analysis of How
People Describe Software Problems,” in Proc. of the 2006 IEEE Symp.
on Visual Languages and Human-Centric Computing (VL/HCC 2006),
pp. 127–134, Sep. 2006.

[12] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle and Resolution
Analysis,” in Proc of The 8th Int. Conf. on Quality Software (QSIC ’08),
Aug. 2008, pp.396–401.

[13] J. Noll, S. Beecham, D. Seichter, “A Qualitative Study of Open Source
Software Development: the OpenEMR Project,” in Proc of the Int.
Symp. on Empirical Software Engineering and Measurement (ESEM
’11), pp. 30–39, Sep. 2011.

[14] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, “Predicting the
severity of a reported bug,” in Proc. of the 7th IEEE Working Conf. on
Mining Software Repositories (MSR 2010), pp. 1–10, May 2010.

[15] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, “Comparing
Mining Algorithms for Predicting the Severity of a Reported Bug,” in

Proc. of the 15th European Conf. on Software Maintenance and
Reengineering (CSMR), pp.249–258, Mar. 2011.

[16] P. Bhattacharya, I. Neamtiu, C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,” in
The Journal of Systems and Software, vol. 85, pp. 2275-2292, 2012.

[17] P. Runeson, M. Alexandersson, O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in Proc. of the
29th Int. Conf. on Software Engineering (ICSE 2007), pp. 499–510, May
2007.

[18] T. Prifti, S. Banerjee, B. Cukic, “Detecting Bug Duplicate Reports
through Local References,” in Proc of the 7th Int. Conf. on Predictive
Models in Software Engineering (PROMISE ’11), pp. 8:1–8:9, Sep.
2011.

[19] L. Wu, B. Xie, G. Kaiser, R. Passonneau, “BugMiner: Software
Reliability Analysis Via Data Mining of Bug Reports,” in Proc. Int.
Conf. on Software Engineering and Knowledge Engineering, (SEKE),
pp. 95–100. 2011.

[20] F. Yamaguchi, F. Lindner, K. Rieck, “Vulnerability Extrapolation:
Assisted Discovery of Vulnerabilities using Machine Learning,” in
Proc. of the 5th USENIX Workshop on Offensive Technologies (WOOT),
USENIX, Aug. 2011.

[21] L. Li, H. Leung, “Mining Static Code Metrics for a Robust Prediction of
Software Defect-Proneness,” in Proc of the 2011 Int. Symp. on
Empirical Software Engineering and Measurement, (ESEM ‘11), pp.
207–214, Sep. 2011.

[22] A. Hovsepyan, R. Scandariato, W. Joosen, J. Walden, “Software
Vulnerability Prediction using Text Analysis Techniques,” in Proc. of
MetriSec’12, Sep. 2012.

[23] A. Austin, L. Williams “One Technique is Not Enough: A Comparison
of Vulnerability Discovery Techniques,” in Proc. of the 2011 Int. Symp.
on Empirical Software Engineering and Measurement (ESEM '11), pp.
97–106, Sep. 2011.

[24] C. A. Martins, M. C. Monard, E. T. Matsubara, “Reducing the
Dimensionality of Bag-of-Words Text Representation Used by Learning
Algorithms,” in Proc of 3rd IASTED International Conference on
Artificial Intelligence and Applications, pp. 228–233, 2003.

[25] C. Fellbaum, WordNet: An Electronic Lexical Database, Cambridge,
MA: MIT Press, 1998.

[26] M. F. Porter, “An algorithm for suffix stripping,” in Program, vol. 14,
no. 3, pp. 130−137, 1980.

[27] Q. B. Duong, E. Zamai, K. Q. Tran Dinh, “Confidence estimation of
feedback information using dynamic bayesian networks,” in Proc. IEEE.
Int. Conf. of the Industrial Electronics Society, (IECON), pp. 3733-3738,
Oct. 2012.

[28] A. McCallum, K. Nigam. “A comparison of event models for naive
bayes text classification,” in Proc. of AAAI-98 workshop on learning for
text categorization, vol. 752, 1998.

[29] J. R. Quinlan, C4.5: Programs for machine learning. Vol. 1. Morgan
kaufmann, 1993.

[30] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” in ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, pp. 186–205, Aug. 2000.

