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Abstract—As critical and sensitive systems increasingly rely 

on complex software systems, identifying software vulnerabilities 

is becoming increasingly important. It has been suggested in 

previous work that some bugs are only identified as 

vulnerabilities long after the bug has been made public. These 

bugs are known as Hidden Impact Bugs (HIBs). This paper 

presents a hidden impact bug identification methodology by 

means of text mining bug databases. The presented methodology 

utilizes the textual description of the bug report for extracting 

textual information. The text mining process extracts syntactical 

information of the bug reports and compresses the information 

for easier manipulation. The compressed information is then 

utilized to generate a feature vector that is presented to a 

classifier. The proposed methodology was tested on Linux 

vulnerabilities that were discovered in the time period from 2006 

to 2011. Three different classifiers were tested and 28% to 88% 

of the hidden impact bugs were identified correctly by using the 

textual information from the bug descriptions alone. Further 

analysis of the Bayesian detection rate showed the applicability of 

the presented method according to the requirements of a 

development team. 

Keywords— hidden impact bugs; bug database mining; 

vulnerability discovery; text mining; classification  

I. INTRODUCTION 

Vulnerabilities in software have always been an important 
security focus. As control and monitoring systems become 
dependent on complex software, discovering these software 
vulnerabilities as early as possible is extremely important. 
Early identification of vulnerabilities will minimize the time in 
which the vulnerabilities expose the systems to attack. 

Industrial software systems that control and monitor critical 
and sensitive infrastructure such as the power grid and 
manufacturing plants are becoming increasingly dependent on 
complex software systems and communications [1], [2]. 
Furthermore, as systems become more complex the number of 
vulnerabilities also increases [3]. While network 
communication related vulnerabilities are important [4], it has 
been shown that a significant portion of the vulnerabilities exist 
in applications and therefore a significant portion of attacks are 
aimed at the application layer [5], [6]. 

Hidden Impact Bugs (HIBs) can be defined as 
vulnerabilities identified as such only after the related bug had 
been disclosed to the public [7], [8]. These software bugs are 
disclosed to the public via bug databases and bug fixes, before 
being identified as having a high security impact and being 
labeled as vulnerabilities. Thus, even though a bug is known to 
the community it may not be as quickly fixed by developers, 
and a fix may not be applied in an appropriately timely fashion 
by end-users, because the security implication of the bug has 
not been correctly identified.  

It was shown in [8] that a significant portion (32% for 
Linux and 62% for MySQL) of discovered software 
vulnerabilities was initially reported as HIBs. It was also 
shown in [8] that the percentage of HIBs has increased in 
recent years. Thus, a methodology that identifies these HIBs as 
they are reported to bug databases will reduce the time critical 
systems are exposed to these vulnerabilities. 

This paper presents a software vulnerability identification 
methodology using HIBs, that utilizes the textual description of 
the bugs that were reported to publically available bug 
databases. The presented methodology utilizes text mining 
techniques to 1) extract syntactical information of bug reports, 
2) compress the information for easier manipulation, and 3) use 
this information to generate a feature vector which is used for 
classification. Thus, the presented system is intended to 
classify bugs as potential vulnerabilities as they are being 
reported to bug databases, thereby reducing the time software 
is exposed to attack through the vulnerability. 

The presented methodology was tested on Linux bug 
reports that were reported to the Redhat Bugzilla bug database 
[9] within the time period from January 2006 to April 2011, 
and Linux kernel vulnerabilities that were reported in the 
MITRE CVE [10] database during the same time period. Using 
the presented text mining steps, a feature vector was generated 
and different classifiers were used to classify HIBs and regular 
bugs. Three different commonly used classifiers were used for 
the classification and 28% to 88% of the HIBs were identified 
correctly. An evaluation of the classifiers over time, based on 
the data available at a given time was performed to investigate 
the usability of such classifiers in real world scenarios. An 
analysis utilizing the Bayesian detection rate of the classifiers 
was also performed to further investigate the classification 
accuracy and the affect of false positives for vulnerability 
detection. 

This manuscript has been authored by Battelle Energy Alliance, LLC 

under Contract No. DE-AC07-05ID14517 with the U. S. Department of 
Energy. The United States Government retains a nonexclusive, paid-up, 

irrevocable, world-wide license to publish or reproduce the published form of 

this manuscript, or allow others to do so, for United States Government 

purposes. 



The rest of the paper is organized as follows. Section II 
briefly discusses related work in the area. Section III elaborates 
the proposed vulnerability identification methodology and the 
text mining process involved. Section IV discusses the 
experimental setup used in this paper in detail. Finally section 
V discusses the experimental results and section VI concludes 
the paper. 

II. RELATED WORK 

Bug databases are used by software developers to identify 
and keep track of information about software bugs that were 
not identified at the time of software release. Developers will 
utilize these bug reports for different purposes such as 
improving reliability and improving future requirements [11], 
[12]. Publically available bug databases enable users to report 
bugs as they encounter it and search the bug database for bugs 
they might encounter in the future [13]. Bug databases also 
keep track of the fixes being released for different bugs and 
what stage of the resolution process a bug is in. Because 
different entities with different levels of expertise and 
requirements report bugs to these databases, the information 
contained in bug reports is highly noisy and not in standard 
form [8], [14], [15]. However, this information has been 
successfully used for various classification purposes [11], [14], 
[15], [16]. 

Detection of duplicate bug reports using textual data of bug 
reports were explored in [17], [18]. A tool for identifying 
duplicate bug reports in Apache, Eclipse and Linux bug 
databases was proposed by Wu et al. in [19]. 

In [14] and [15] Lamkanfi et al. used the textual description 
of bug reports to classify severity of bugs. In [15] classification 
algorithms such as Naïve Bayes and Naïve Bayes Multinomial 
were compared for classifying Eclipse and GNOME bug 
reports. 

Software vulnerability discovery is largely focused on 
source code analysis. In [20] the authors used machine learning 
and text mining to analyze the source code to identify 
vulnerabilities. However, the results were below expectations. 
Similar work was done in [21] to predict defect-proneness in 
software. A text mining based approach that analyzes source 
code was explored to identify mobile device vulnerabilities in 
[22]. 

Several commercially available tools for vulnerability 
identification rely on static code analysis. However, it has been 
suggested that these tools as well as free tools may have high 
false positive rates [23]. Furthermore, it has been shown that in 
order to achieve realistic prediction rates, either multiple static 
analysis tools must be used or significant manual adjustment of 
these tools is required [23]. 

III. HIDDEN IMPACT BUGS CLASSIFICATION METHODOLOGY  

As mentioned earlier, previous work has shown that a 
significant portion of vulnerabilities are only identified as such 
after they have been publically disclosed [7], [8]. Thus, 
although some vulnerabilities were identified as bugs in the 
code at an earlier time, the actual security impact of these bugs 
were not detected till later. Therefore, this paper proposes a 
methodology that utilizes information in bug reports to identify 

vulnerabilities as they are reported to bug databases. This 
section will first elaborate on the overall classification process 
and then discuss the text mining techniques used in detail. 

A. The classification process 

The presented methodology utilizes the textual description 
of reported bugs to generate a unique feature vector that will be 
used by a classifier. The classifier will classify reported bugs as 
potential vulnerabilities or regular bugs. Fig. 1 illustrates the 
classification process. The overall process can be separated 
into four major steps.  

In Step 1 (Fig. 1) the short and long descriptions of the bug 
report is extracted. The short description is a title provided by 
the reporter that is around 5-10 words in length. The long 
description is a more detailed description of the bug which may 
include how to recreate it, code snippets, memory dumps, etc.  

In Step 2, the most important and recurring syntactical 
information is extracted from the short and long descriptions of 
the bugs. This is performed via text mining techniques which 
will be discussed later in Section II.B. The syntactical 
information is extracted in the form of single unique words 
known as keywords. The extraction process removes words 
and symbols that might not carry a significant amount of 
information, and only extracts single words. 

In Step 3, compression of this extracted information is 
performed. Text mining techniques are used in this step to 
identify words that may carry similar information and combine 
them. This step reduces the feature space which decreases the 
resource utilization of the process. This step also counts the 
number of bugs each keyword has appeared in and identifies 
the most frequently used keywords in the bug descriptions. 

 
 

Fig. 1. Identification methodology of vulnerabilities using bug reports 



Finally, in Step 4, extracted set of keywords are used to 
create a feature space for the bug descriptions. Each dimension 
of the feature space consists of a set of words that carry similar 
information. This feature vector can be used by a classifier to 
perform the final classification. Thus the classifier will classify 
a given bug as a potential HIB or a regular bug. 

B. Text mining process 

This section explains the main text mining steps (Step 2 
and Step 3) in detail. Step 2 and Step 3 consist of three 
different stages each. 

The first main step of the text mining process is extracting 
syntactical information (Step 2 in Figure 1). The syntactical 
information of a textual document can be represented as a bag-
of-words where we store the number of times each unique 
keyword (term) is found in a bug report. This representation is 
also known as the term frequency representation [24]. Thus a 
document Di containing n unique words can be represented as: 

 },....,,{ 21 iniii tttD   

where, tij is the number of times term tj appeared in document i. 
As the name suggests the bag-of-words representation only 
takes into account words and disregards numbers and special 
characters in the text. This is because numbers and special 
characters carry very little to no information when taken out of 
context. Similarly, the cases (upper and lower) of the letters in 
words are also disregarded for the same reason. 

Furthermore, frequently occurring words in English 
language, known as stop words, are also removed from the 
bag-of-words representation. These words include Pronouns 
such as: “I, he, she”, Articles such as: “a, an, the”, Prepositions 
such as: “after, to, but”, Conjunctions such as: “and, but, 
when”, and other frequently appearing words. Such words also 
carry very little to no information when taken out of context, 
and are therefore disregarded. 

In order to successfully capture all the information in a set 
of N documents, the term frequency of all M unique words in 
the set of N documents must be used. Thus the syntactical 
information of N documents with M unique words can be 
expressed using a MN   matrix: 
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This MN   matrix is called the Term-Document Matrix 

(TDM). 

The main problem faced when using the TDM is, as the 
number of documents (N) increases, the number of unique 
words (M) also increases. This results in a large matrix which 
leads to increased resource usage and higher computational 
times. Since many of the unique words might not appear in 
most of the documents, the TDM can be extremely sparse as 
well. 

In order to alleviate these problems and better represent the 
information in textual documents, further text mining 
techniques were applied to the problem discussed in this paper. 
These techniques reduce the dimensionality, M of the TDM by 
combining words that carry similar information and further 
removing words that carry little information. This is the second 
main step of the text mining process, which is compression of 
the extracted syntactical information (Step 3 in Fig. 1). 

The compression step consists of three sequential stages. 
The first stage of compression is identifying and combining 
synonyms. Synonyms are words that have the same meaning or 
nearly the same meaning as another word. Thus identifying and 
combining synonyms leads to a reduced dimensionality with 
very little loss of information. In this paper, the English word 
database Wordnet [25] was used to identify synonyms. After 
synonyms are identified, they can be combined to form a single 
dimension in the TDM. Since similar words are combined to 
form one dimension, each dimension mi in the TDM can be 
represented as a set of r keywords, where the keyword set mi 
can be represented as: 

 },....,,{ 21 iriii aaam   

where aik is the k
th

 word in the dimension mi. Before identifying 
synonyms the number of words in each dimension, r is 1 for all 
dimensions. 

Let “word a is a synonym of word b” be represented as 
ba  , then, for the two keyword sets mi and mj represented by: 

 },....,,{ 21 iAiii aaam   

 },....,,{ 21 jBjjj bbbm   

 lkabbaanyifmm ikjljlikji ,  

Furthermore, if mi = mj : 

 jiji mmsynm ,)(  

and mi and mj is deleted from the TDM and m(syn)i,j is added to 
the TDM. 

This process is iterated over the complete set of identified 
words M in the TDM, until there are no more dimensions that 
satisfy mi = mj. 

After this process the dimensionality of the TDM, M is 
reduced to M’: 

 synMM '  

where: 
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where, M is the dimensionality of the TDM and ri is the 
number of keywords of each keyword set. 

Thus, the use of synonyms effectively reduces the 
dimensionality of the TDM. Since synonyms are words that 
carry similar information, the loss of information of this 
process is minimal. 

The second stage in the compression step (Step 3, Fig. 1) of 
the text mining process is deconstructing words into their base 
forms and combining similar words. The deconstruction of 
words into their base form is known as stemming. The specific 
stemming algorithm used in this paper is called Porter 
stemming [26]. Stemming is capable of deconstructing words 
that have been transformed, for example by pluralizing or by 
adding a gerund, into their basic form. This enables 
identification of transformed words as similar to their base 
words. 

The process of indentifying similar stemmed words and 
combining them is similar to the process described above for 
synonyms. Therefore as with identifying and combining 
synonyms, the dimensionality of the TDM is reduced with 
minimal loss of information. 

The third and final stage of the compression step is 
identifying the most frequently used keyword sets in the TDM. 
This is done by counting the number of documents each 
keyword set appears in, and selecting the keyword sets which 
appear most often in documents. Typically keyword sets that 
appear in less than P% of the documents are discarded. 
Although this type of threshold selection reduces the 
dimensionality of the TDM significantly and identifies words 
that are most general to the document set, it may also remove 
words that are important to the classification and retain words 
that may not contribute to the classification. 

IV. EXPERIMENTAL SETUP 

This section explains in detail the experimental setup that 
was used to test the presented vulnerability classification 
methodology. The presented methodology was tested on a set 
of bug reports and HIBs for the Linux kernel that were reported 
in the time period from January 2006 to April 2011. 

A. Vulnerability and Bug Databases used 

For this paper the MITRE CVE vulnerability database [10] 
was used to identify HIBs for the Linux kernel. The Redhat 
Bugzilla bug database [9] was used as the bug database. All the 

bugs and vulnerabilities explored in this paper are within the 
time period from January 2006 to April 2011. 

In order to identify vulnerabilities that are most applicable 
and most relevant, only vulnerabilities that affected 1) multiple 
processors, 2) multiple distributions and 3) Linux kernel 2.6 
and above, were considered in this paper. HIBs were identified 
as vulnerabilities that had at least 2 weeks of impact delay, 
where the impact delay was defined as the time from the public 
disclosure of the bug via a patch to the time a CVE was 
assigned to the vulnerability in the MITRE database. 

Out of the Linux kernel vulnerabilities reported from 
January 2006 to April 2011 in the MITRE CVE database, 403 
vulnerabilities were identified as most relevant using the rules 
mentioned above. Out of these 129 (39%) showed an impact 
delay of at least 2 weeks [8]. Unfortunately, out of the 129 
HIBs identified, only 73 had accessible bug reports in the 
Redhat Bugzilla bug database. 

As of 2011-4-30 the Redhat Bugzilla database contained 
202,896 entries. Table I shows the distribution of bugs per year 
and the mean number of bugs reported per day each year in the 
Redhat Bugzilla bug database. The “Other Unknown” bugs in 
Table I refer to bugs that were not considered due to no report 
date, no textual descriptions or due to denied access. 

B. Classification subset 

In order to test the presented vulnerability classification 
methodology, a set of Redhat Linux bugs, containing two 
classes: regular bugs and HIBs were constructed. 

The MITRE CVE vulnerability database reports the bugs 
associated with each vulnerability. This information was used 
to extract bugs in the Redhat Bugzilla bug database that were 
associated with the identified vulnerabilities. Therefore for the 
final classification and testing the set of 73 identified HIBs that 
had accessible bug reports in the Redhat Bugzilla bug database 
were used. These bugs constitute the HIB class. 

The regular bug class contained 6000 randomly selected 
bugs reported from January 2006 to April 2011 that were not 
identified as vulnerabilities. Since the number of bugs reported 
per each year is different for each year (see Table I), in order to 
avoid misrepresenting any year, the random set was 
constructed to reflect proportion of bugs reported for each year. 
However, it is important to note that the regular bug class may 
contain bugs that are yet to be identified as vulnerabilities, and 
the classifiers may be negatively affected by training on these 
examples. 

TABLE I. NUMBER OF BUGS REPORTED PER YEAR IN THE REDHAT 

BUGZILLA [9] DATABASE  

Year 
Number of bug 

reports 

Average number of 

bugs reported per 

day 

Prior to 2006 59,819 22.9 
2006 15,249 41.8 

2007 17,217 47.2 

2008 20,817 57.0 
2009 26,950 73.8 

2010 43,120 118.1 

2011 (to April) 17,616 146.8 
Other unknown 2108 - 

Total 202.896 44.3 

 

TABLE II. NUMBER OF SELECTED REGULAR BUGS AND HIDDEN IMPACT 

BUGS FROM EACH YEAR  

Year 
Number of 

regular bugs 

Number of hidden 

impact bugs found 

2006 642 3 
2007 725 12 

2008 876 21 

2009 1135 10 
2010 1,819 25 

2011 (to April) 803 2 

Total 6000 73 

 



Table II shows the number of HIBs that were identified for 
each year and the number of regular bugs selected from each 
year for the classification process. 

C. Construction of TDM 

The Term-Document Matrix (TDM) was constructed using 
the short and long descriptions of the bug reports. The short 
and long descriptions of the bugs were treated separately, 
meaning the text mining process was applied to words 
extracted from the short description and the long description 
separately. This is because a word in the short description may 
carry different information compared to the same word in the 
long description. 

The percentages P for selecting the keywords appearing 
most frequently in bug reports were set at PSDESC = 1% and 
PLDESC = 3%. These numbers were selected somewhat 
arbitrarily and the same thresholds were used to test each 
classifier. Although this type of selection is sub-optimal for 
classification, it is sufficient for demonstrating the vulnerability 
classification methodology described in this paper. 

D. Classifiers tested 

Three different classifiers were tested on the textual 
information extracted from bug reports: 1) Naïve Bayes (NB), 
2) Naïve Bayes Multinomial (NBM), and 3) Decision Tree 
(DT). These classifiers were chosen because of their high 
interpretability, fast learning phase and capability of classifying 
highly multi dimensional data. The selected classifiers will 
classify a given bug as an HIB or regular bug. 

NB [27] and NBM [28] use the Bayes theorem of 
conditional probability to calculate the conditional probability 
of a class given a set of keywords. The NB classifier only 
considers the presence or absence of a keyword in a document, 

whereas the NBM classifier considers the number of times 
each keyword occurred in each document [28]. DT use 
information entropy and information gain of each dimension to 
generate a set of optimal dimensions to classify the dataset on. 
The particular version of DT used in this paper, called C4.5 
[29], also incorporates heuristic methodologies to reduce the 
number of nodes in the final tree. 

V. EXPERIMENTAL RESULTS 

The classification was performed using 10-fold cross 
validation. Classification results are shown in terms of True 
Positives (TP) and True Negatives (TN) as shown in Table III. 

The overall classification results are shown in Table IV. 
Naïve Bayes classifier showed the best TP rate (88%), 
however, the TN rate was low. Similarly the decision tree had a 
very low TP rate (28%) but the highest TN rate (99%). Naïve 
Bayes Multinomial showed a higher TP rate as well as higher 
TN rate. Although these results may be relatively low, even the 
lowest TP rate (28%) is far better than a random guess (1.2%). 

According to Table II, the number of reported bugs and the 
number of identified vulnerabilities have been increasing each 
year. In order to evaluate the usability of the classifiers in this 
real world scenario, the performance of each classifier was 
measured across time, based on the data available at a given 
moment in time. For this analysis, cumulative bugs reported 
and HIBS found at the start of each year was selected (Table 
II). 

Figs. 2, 3 and 4 plot the yearly classification results for 
Naïve Bayes, Naïve Bayes Multinomial and Decision Tree 
classifiers respectively. As expected, the TP rate increases with 
time. This is because the size of the HIB set is increasing. 
Therefore, as more HIBs are correctly classified as 
vulnerabilities, the classifiers are able to adapt to the new data 
and benefit from these newly discovered HIBs. 

Since the size of the Regular bug set is very large compared 
to the HIB set (6000 vs. 73), even a low rate of FP may result 
in an overwhelming amount of bugs incorrectly classified as 
HIBs. In order to identify this problem, Bayesian detection rate 
is used which is the probability that an instance classified as 
true, is actually true [30]. Thus, a higher Bayesian detection 
rate means that a lower percentage of regular bugs were 
improperly classified as vulnerabilities and therefore a software 
maintenance team will have to sort through fewer regular bugs 
to find those which are actual vulnerabilities. Therefore, a 
higher Bayesian detection rate is preferred. The Bayesian 
detection rate can be calculated using the following equation: 


)( FPTP

TP
RateDetectionayesianB


  

Furthermore, using the average number of bugs reported 
per day, the number of bugs that will be classified as HIBs by 
the classifier can be calculated as: 

 Dayper  Reported Bugs
FNTNFPTP

FPTP
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TABLE IV. CLASSIFICATION RESULTS FOR THE CLASSIFIERS TESTED 

Classifier TP Rate TN Rate 

Naïve Bayes (NB) 0.88 0.46 

Naïve Bayes Multinomial (NBM) 0.78 0.90 

Decision Tree (DT) 0.28 0.99 

 

TABLE V. BAYESIAN DETECTION RATE OF THE CLASSIFIERS TESTED 

Classifier 
Bayesian  
Detection 

Rate 

Number of 

Bugs 
Classified 

Per Day 

(2011) 

Naïve Bayes (NB) 0.02 80.3 
Naïve Bayes Multinomial (NBM) 0.09 16.5 

Decision Tree (DT) 0.40 1.2 

 

TABLE III. CONFUSION MATRIX 

  Classified as 

  HIB Regular 
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True Positives  
(TP) 

False Negatives  
(FN) 

Regular 
False Positives  

(FP) 

True Negatives  

(TN) 

 



The Bayesian detection rate and the number of bugs that 
will be classified as HIBs by each classifier for a given day in 
2011 is shown in Table V. These results show that although the 
DT had a low TP rate more than a third of bugs that are 
classified as vulnerabilities are actual vulnerabilities. This also 
leads to less than 2 bugs being classified as vulnerabilities each 
day in 2011 where over 145 bugs were reported to the bug 
database each day (see Table I). 

Similarly, NBM classifier reported a Bayesian detection 
rate of 0.09, which means that just under one out of 10 bugs 
that are classified as a vulnerability is an actual vulnerability. 
Due to the very high FP rate of the NB classifier, only 1 out of 
50 bugs that are classified as vulnerabilities are actual 
vulnerabilities. 

The experimental results show that the tested classifiers 
were capable of identifying HIBs in the Linux bug database 
using the textual information stored in the bug reports. 
Although the classification accuracy was relatively low, it was 
shown to be at least an order of magnitude better than a 
random guess. Furthermore, as mentioned above, the regular 
bug set may contain HIBs that are yet to be correctly identified 

as vulnerabilities. These HIBs may be contained in the false 
positives of the classifiers. 

It should be understood that the number of keywords in the 
final TDM play an important role in the classification results. 
Although the tests presented in this paper were carried out 
using the same set of keywords for each classifier, some 
classifiers may produce better results for different sets of 
keywords. Furthermore, important keywords that contribute to 
the classification may not be included when the final TDM is 
generated. 

VI. CONCLUSION 

This paper presented a methodology for identifying 
vulnerabilities in software systems for Hidden Impact Bugs 
(HIBs) using textual information from publically available bug 
databases. The presented methodology uses text-mining 
techniques to extract syntactical information from bug reports, 
and generate a feature vector that can be used by classification 
algorithms. Naïve Bayes, Naïve Bayes multinomial, and 
Decision tree classification was tested on a set of bugs 
extracted from the Redhat Bugzilla bug database and HIBs 
identified for the Linux Kernel. The tested classifiers were able 
to correctly classify 28% to 88% of the HIBs. 

An analysis of the classifiers over time using the 
cumulative data gathered up to that time showed the ability of 
the classifiers to adapt to new data as well as the real world 
usability of such a classification methodology. Further analysis 
on the Bayesian detection rate of the classifiers showed that the 
number of bugs that will be classified as vulnerabilities per day 
given the results of each classifier (from less than 2 to over 80). 
This information can be used by developers to select the 
optimal classifier, given the number of bugs that can be 
handled by a software maintenance team. 

As future work the feature extraction process will be 
enhanced to incorporate information from already identified 
HIBs. Further improvements can be achieved by identifying 
keywords that contribute to the classification more and 
including these dimensions in the feature vector. Multiple 
classifiers will be used in series or parallel to further increase 
the classification accuracy. The feature vector can be enhanced 

 
 

Fig. 2. Classification results for Naïve Bayes Classifier 

 
 

Fig. 3. Classification results for Naïve Bayes Multinomial Classifier 

 
 

Fig. 4. Classification results for Decision Tree Classifier 



by incorporating other dimensions of the bug reports and 
attributes of the source code itself and other aspects of the 
software development process. 
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