EXAMPLE OF USE OF THEOREMS ON LIMITS
FIND: limx --> 0 [x2sin(1/x)]/sinx
? limx --> 0 [x2sin(1/x)]/sinx =
limx --> 0 [xsin(1/x)]/(sinx/x) = limx --> 0 [xsin(1/x)]/1
Now -1<sin(1/x)ə and limx --> 0 x = 0, so
limx --> 0 [xsin(1/x)]/1= 0 * limx --> 0 sin(1/x)= 0