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Abstract

In 1985, Erdős and Neśetril conjectured that the strong edge-coloring number
of a graph is bounded above by5

4∆2 when∆ is even and1
4(5∆2 −2∆ + 1) when

∆ is odd. They gave a simple construction which requires this many colors. The
conjecture has been verified for∆ ≤ 3. For∆ = 4, the conjectured bound is 20.
Previously, the best known upper bound was 23 due to Horak. Inthis paper we
give an algorithm that uses at most 22 colors.

1 Introduction

A proper edge-coloringis an assignment of a color to each edge of a graph so that no
two edges with a common endpoint receive the same color. Astrong edge-coloring
is a proper edge-coloring, with the further condition that no two edges with the same
color lie on a path of length three. Thestrong edge chromatic numberis the minimum
number of colors that allow a strong edge-coloring. In this paper we consider the
maximum possible strong edge chromatic number as a functionof the maximum degree
of the graph. For other variations of the problem, we refer the reader to a brief survey
by West [6] and a paper by Faudree, Schelp, Gyárfás and Tuza[3].

We use∆ to denote the maximum degree of the graph. In 1985 Erdős and Nešetřil
conjectured that the strong edge chromatic number of a graphis at most54∆2 for ∆ even
and 1

4(5∆2− 2∆ + 1) for ∆ odd; they gave a construction that showed this number is
necessary. Andersen proved the conjecture for the case∆ = 3 [1]. In this paper, we
consider the case∆ = 4.

Erdős and Nešetřil’s construction for∆ = 4 is shown in figure (1a). To form this
graph, begin with a 5-cycle, then expand each vertex into twononadjacent vertices who
inherit all the neighbors of the original vertex. The graph has 20 edges, and contains
no induced 2K2 (in fact, this is the largest graph that contains no induced 2K2 and
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has∆ = 4 [2]). Hence, in a strong edge-coloring, every edge must receive its own
color. The best upper bound previously known was 23 colors, proven by Horak [4]; we
improve this upper bound to 22 colors.

We refer to the color classes as the integers from 1 to 22. A greedy coloring al-
gorithm sequentially colors the edges, using the least color class that is not already
prohibited from use on an edge at the time the edge is colored.By theneighborhood
of an edge, we mean the edges which are distance at most 1 from the edge. Intuitively,
this is the set of edges whose color could potentially restrict the color of that edge.
We use the notationN(e) to mean the edges in the neighborhood ofe that are colored
before edgee. Figure (1b) shows that the neighborhood of an edge has size at most 24.
So for every edge order, we have|N(e)| ≤ 24 for each edge. Thus, for every edge or-
der, the greedy algorithm produces a strong edge-coloring that uses at most 25 colors.
However, there is always some order of the edges for which thegreedy algorithm uses
exactly the minimum number of colors required. Our aim in this paper is to construct
an order of the edges such that the greedy algorithm uses at most 22 colors. Through-
out this paper, when we use the term coloring, we mean strong edge-coloring. Each
connected component ofG can be colored independently of other components, so we
assumeG is connected. We allow our graphs to include loops and multiple edges. We
useδ to denote the minimum degree of the graph and we used(v) to denote the degree
of vertexv. The girth of a graph is the length of the shortest cycle.
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Figure 1: (a) Erdős and Nešetřil’s construction for∆ = 4. This graph requires 20 colors.
(b) The largest possible neighborhood of an edge has size 24.

Let v be an arbitrary vertex of a graphG. Let distv(v1) denote the distance from
vertexv1 to v. Let distance class ibe the set of vertices at distancei from vertexv.
The distance class of an edge is the minimum of the distance classes of its vertices. We
say that an edge order iscompatiblewith vertexv if e1 precedese2 in the order only
when distv(e1) ≥ distv(e2). Intuitively, we color all the edges in distance classi + 1
(farther fromv) before we color any edge in distance classi (nearer tov). Similarly, if
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we specify a cycleC in the graph, we can define distance classi to be the set of vertices
at distancei from cycleC. We say an edge order is compatible withC if e1 precedese2

in the order only whendistC(e1) ≥ distC(e2).

Lemma 1 If G is a graph with maximum degree 4, then G has a strong edge-coloring
that uses 21 colors except that it leaves uncolored those edges incident to a single
vertex. If C is a cycle in G, then G has a strong edge-coloring that uses 21 colors
except that it leaves uncolored the edges of C.

Proof. We first consider the case of leaving uncolored only the edgesincident to a
single vertex. Letv be a vertex ofG. Greedily color the edges in an order that is
compatible with vertexv. Suppose we are coloring edgee, not incident tov. Let u be
a vertex adjacent to an endpoint ofe that is on a shortest path frome to v. Then none
of the four edges incident tou has been colored, since each edge incident tou is in a
lower distance class thane. Thus,|N(e)| ≤ 24−4= 20.

To prove the case of leaving uncolored only the edges ofC, we color the edges in
an order compatible withC. The argument above holds for every edge not incident to
C. If e is incident toC and|C| ≥ 4, then at least four edges in the neighborhood ofe
are edges ofC; so again|N(e)| ≤ 24−4= 20. If e is incident toC and|C|= 3, then by
counting we see that the neighborhood ofe has size at most 23. The three uncolored
edges ofC imply that|N(e)| ≤ 23−3= 20.�

Lemma 1 shows that if a graph has maximum degree 4 we can color nearly all edges
using at most 21 colors. In the rest of this paper, we show thatwe can always finish
the edge-coloring using at most one additional color. Theorem 2 is the main result of
this paper. We give the proof of the general case (4-regular and girth at least six) now,
and defer the other cases (when the graph is not 4-regular or has small girth) to lemmas
4-10 in the remainder of the paper.

Theorem 2 Any graph with maximum degree 4 has a strong edge-coloring with at
most 22 colors.

Lemma 3 Any 4-regular graph with girth at least six has a strong edge-coloring with
at most 22 colors.

Proof. By Lemma 1, we choose an arbitrary vertexv, and greedily color all edges
not incident tov, using at most 21 colors. Now we recolor edgese1,e2,e3, ande4 (as
shown in figure 2) using color 22. This allows us to greedily extend the coloring to the
four edges incident tov. Edgese1,e2,e3, ande4 can receive the same color since the
girth of G is at least 6.�

Lemma 3 proves Theorem 2 for 4-regular graphs with girth at least 6. To prove
Theorem 2 for graphs that are not 4-regular and graphs with girth less than six, we use
two ideas. In Section 2, we consider graphs that are not 4-regular and graphs with girth
at most 3. In each case, we exploit local structure of the graph to give an edge order
with |N(e)| ≤ 20 for every edge inG. In Sections 3 and 4, we consider 4-regular graphs
with girth 4 or 5. We find pairs of edges that can receive the same color. In this case,
even though|N(e)| > 21, because not every edge inN(e) receives a distinct color, we
ensure that at most 22 colors are used.
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Figure 2: Vertexv has degree 4 and the girth of the graph is at least 6.

2 Graphs with δ < 4 or girth at most 3

The three lemmas in this section are each proved using the same idea. We color nearly
all edges as in Lemma 1. We show that due to the presence of a lowdegree vertex, a
loop, a double edge, or a 3-cycle, it is possible to order the remaining uncolored edges
so that a greedy coloring uses at most 21 colors.

Lemma 4 Any graph with maximum degree 4 that has a vertex with degree at most 3
has a strong edge-coloring that uses 21 colors.

Proof. We assumed(v) = 3 (if actually d(v) < 3, this only makes it easier to com-
plete the coloring). Color the edges in an order that is compatible with vertexv. Let
e1,e2,e3 be the edges incident to vertexv. If the edges are orderede1, e2, e3, we have
|N(e1)| ≤ 18, |N(e2)| ≤ 19 and|N(e3)| ≤ 20, so there are colors fore1, e2 ande3. �

Lemma 5 A 4-regular graph with a loop or a double edge has a strong edge-coloring
that uses 21 colors.

Proof. If e is a loop incident to vertexv, we can greedily color the edges in an order
compatible with vertexv (this is very similar to Lemma 4). So we can assume that the
graph has a double edge.

Let v be one of the vertices incident to the double edge. Color the edges in an order
that is compatible with vertexv. Let e3,e4 be the double edges ande1,e2 be the other
edges incident tov. Then|N(e1)| ≤ 17, |N(e2)| ≤ 18, |N(e3)| ≤ 16 and|N(e4)| ≤ 17,
so there are colors fore1, e2, e3, ande4. �

Lemma 6 A 4-regular graph with girth 3 has a strong edge-coloring that uses 21
colors.

Proof. LetC be a 3-cycle in the graph. By Lemma 1 we greedily color all edges except
the edges ofC; this uses at most 21 colors. An edge of a 3-cycle has a neighborhood of
size at most 20, so each of the three uncolored edges satisfies|N(e)| ≤ 18 and we can
greedily finish the coloring.�
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3 4-regular graphs with girth four

Lemma 1 shows that we can color nearly all edges of the graph using 21 colors. Here
we consider 4-regular graphs of girth four. We give an edge order such that the greedy
coloring uses at most 22 colors; in some cases we precolor four edges prior to the
greedy coloring. We useA(e) to denote the set of colors available on edgee.

Lemma 7 Any 4-regular graph with girth 4 has a strong edge-coloring that uses 22
colors.

Proof. Let C be a 4-cycle, with the 4 edges labeledci (1≤ i ≤ 4) in clockwise order
and the pair of edges not on the cycle and adjacent toci andci−1 is labeledai andbi

(all subscripts are mod 4). We refer to the edges labeled byai andbi asincidentedges.
By Lemma 1, we greedily color all edges except the edges ofC and the 8 incident
edges. This uses at most 21 colors. If two incident edges share an endpoint not onC,
the two edges form anadjacent pair. The only possibility of an adjacent pair is ifa1

or b1 shares an endpoint witha3 or b3 (or similarly if a2 or b2 shares an endpoint with
a4 or b4). If the twelve uncolored edges contain at least two adjacent pairs, then we
greedily color the incident edges. The neighborhood of eachci has size at most 21, so
|A(ci)| ≥ 4 for all i; thus we can finish by greedily coloring the four edges ofC.
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Figure 3: A 4-cycle in a 4-regular graph.

Suppose the uncolored edges contain exactly one adjacent pair. For example, sup-
pose edgesa2 anda4 share an endpoint. Call edgesa1,b1,a3, andb3 a pack. Consider
the case when we can assign color 22 to two edges of the pack. Now we greedily color
all edges except the edges ofC. This uses at most 21 colors (Lemma 1). Eachci has a
neighborhood with size at most 22. Since color 22 is used twice in the neighborhood
of eachci , eachci satisfies|A(ci)| ≥ 4. So we can greedily finish the coloring. Instead
consider the case when no pair of edges in the pack can receivethe same color. This
implies the existence of edges between each pair of nonadjacent edges of the pack. Call
these four additional edgesdiagonaledges. Observe (by counting) that the neighbor-
hood of a diagonal edge has size at most 21. So we can color the diagonal edges last in
the greedy coloring. Thus we greedily color all edges exceptthe four edges ofC and
the four diagonal edges (this uses at most 21 colors). Now we color the four edges of
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C (the four uncolored diagonal edges ensure there are enough colors available to color
the edges ofC). Lastly, we color the four diagonal edges.

Finally, suppose that the uncolored edges contain no adjacent pairs. In this case we
will greedily color almost all edges of the graph (Lemma 1), but must do additional
work beforehand to ensure that after greedily coloring mostof the edges eachci will
satisfy|A(ci)| ≥ 4. As above, call edgesa1,b1,a3, andb3 a pack. Similarly, call edges
a2,b2,a4, andb4 a pack.

Consider the case when we can assign color 21 to two edges of one pack and assign
color 22 to two edges of the other pack. We greedily color all edges but the four edges
of C. Lemma 1 showed that a similar greedy coloring used at most 21colors; however
in Lemma 1 none of the edges were precolored. We adapt that argument to show that
even in the presence of these four precolored edges a greedy coloring uses at most 22
colors. Lemma 1 argued there were at least four uncolored edges in the neighborhood
of the edge being colored, so|N(e)| ≤ 20. The same argument applies in this case
except that possibly one of the edges that was uncolored in Lemma 1 is now colored.
Hence|N(e)| ≤ 21 (this follows from the fact that the four uncolored edges in Lemma
1 were incident to the same vertex and in the present situation at most one precolored
edge is incident to each vertex). Hence, the greedy coloringuses at most 22 colors. The
neighborhood of eachci has size at most 23. Since colors 21 and 22 are each repeated
in the neighborhood of eachci , we see that eachci satisfies|A(ci)| ≥ 4. So we can
greedily finish the coloring.

Instead, consider the case when we can not assign color 21 to two edges of one
pack and assign color 22 to two edges of the other pack. If no two edges in a pack
can receive the same color, this implies the existence of edges between each pair of
nonadjacent edges of the pack. These four diagonal edges each have a neighborhood
with size at most 21. As we did above, we greedily color all edges except the four
edges ofC and the four diagonal edges. Now we color the four edges ofC, and lastly,
we color the four diagonal edges.�

4 4-regular graphs with girth five

Here we consider 4-regular graphs with girth five. As in the case of girth four, we
color nearly all the edges by Lemma 1. Intuitively, if there are enough different colors
available to be used on the remaining uncolored edges, we should be able to complete
this coloring by giving each uncolored edge its own color. However, if there are fewer
different colors available than the number of uncolored edges, this approach is doomed
to fail. Hall’s Theorem formalizes this intuition. In the language of Hall’s Theorem,
we havem uncolored edges, and the setAi denotes the colors available to use on edge
i. For a proof of Hall’s Theorem, we refer the reader toIntroduction to Graph Theory
[5].

Theorem 8 (Hall’s Theorem) There exists a system of distinct representatives for a
family of sets A1,A2, . . . ,Am if and only if the union of any j of these sets contains at
least j elements for all j from1 to m.
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We define apartial coloring to be a strong edge-coloring except that some edges
may be uncolored. Suppose that we have a partial coloring, with only the edge setT
left uncolored. LetA(e) be the set of colors available to color edgee. Then Hall’s
Theorem guarantees that if we are unable to complete the coloring by giving each edge
its own color, there exists a setS⊆ T with |S| > | ∪e∈SA(e)|. Define thediscrepancy,
disc(S) = |S|− |∪e∈SA(e)|.

Our idea is to color the set of edges with maximum discrepancy, then argue that
this coloring can be extended to the remaining uncolored edges.

Lemma 9 Let T be the set of uncolored edges in a partially colored graph. Let S be a
subset of T with maximum discrepancy. Then a valid coloring for S can be extended to
a valid coloring for all of T .

Proof. Assume the claim is false. Since the coloring ofScannot be extended toT \S,
some set of edgesS′ ⊆ (T \S) has positive discrepancy (after coloringS). We show
that disc(S∪S′) > disc(S). Let R be the set of colors available to use on at least one
edge of(S∪S′). Let R1 be the set of colors available to use on at least one edge ofS.
Let R2 be the set of colors available to use on at least one edge ofS′ after the edges of
Shave been colored. Letk = disc(S). Then|S| = k+ |R1| and|S′| ≥ 1+ |R2|. SinceS
andS′ are disjoint, we get

|S∪S′| = |S|+ |S′| ≥ k+1+ |R1|+ |R2| > k+ |R|.

The latter inequality holds since a color which is inR\R1 must be inR2 and there-
fore we have|R| = |R1∪R2| ≤ |R1|+ |R2|. Hence

disc(S∪S′) = |S∪S′|− |R|> k = disc(S)

This contradicts the maximality of disc(S). Hence, any valid coloring ofS can be
extended to a valid coloring ofT. �

Lemma 10 If G is a 4-regular graph with girth 5, then G has a strong edge-coloring
that uses 22 colors.

Proof. Let C be a 5-cycle, with the 5 edges labeledci (1≤ i ≤ 5) in clockwise order
and the pair of edges not on the cycle and adjacent toci andci−1 is labeledai andbi

(all subscripts are mod 5). We refer to the edges labeled byai andbi asincidentedges.
Edgea1 is at least distance 2 from at least one of edgesa3 andb3; for if a1 has edge
e1 to a3 and edgee2 to b3 then we have the 4-cyclee1,e2,b3,a3. Thus (by possibly
renaminga3 andb3) we can assume there is no edge between edgesa1 andb3.

By repeating the same argument, we can assume there is no edgebetween the two
edges of each of the following pairs:(a1,b3), (a3,b5), (a5,b2), and(a2,b4). Assign
color 21 to edgesb1 andc3 and assign color 22 to edgesa5 andb2. Greedily color all
edges except the edges ofC and the incident edges. This uses at most 22 colors.

There are 11 uncolored edges; if we can not assign a distinct color to each uncolored
edge, then Hall’s Theorem guarantees there exists a subset of the uncolored edges
with positive discrepancy. LetS be a subset of the uncolored edges with maximum
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Figure 4: A 5-cycle in a 4-regular graph.

discrepancy. By counting the uncolored edges in the neighborhood of each edge, we
observe that ife is an edge ofC, then |A(e)| ≥ 8 and if e is an incident edge then
|A(e)| ≥ 5. We can assume thatS contains some edge ofC, since otherwise we can
greedily colorS(Lemma 1), then extend the coloring to the remaining uncolored edges
(Lemma 9). Sincedisc(S) > 0 and|A(e)| ≥ 8 for each edge ofC, we have|S| is 9, 10,
or 11.

Suppose|S| is 9 or 10. Then sinceS is missing at most two uncolored edges,S
contains at least one of the pair(a1,b3), the pair(a2,b4), and the pair(a3,b5). Since
each edge in the pair satisfies|A(e)| ≥ 5 and| ∪e∈SA(e)| ≤ 9, some color is available
for use on both edges of the pair. Assign the same color to bothedges. Since the
neighborhood of each uncolored incident edge,e, contains at least three uncolored
edges ofC, we have|N(e)| ≤ 24− 3 = 21; so we can greedily color the remaining
uncolored incident edges. Now ifS contains the pair(a1,b3) or the pair(a3,b5) then
color the edges of the 5-cycle in the orderc2,c4,c5,c1; if S contains the pair(a2,b4)
then color the edges of the 5-cycle in the orderc2,c4,c1,c5.

Suppose|S| is 11 and that no color is available on both edges of any of the pairs
(a1,b3), (a2,b4), and(a3,b5) (otherwise the above argument holds). Assign the same
color toc1 anda4; call it color x. Note that if|A(c1)| ≥ 8, |A(a4)| ≥ 5, and|A(c1)∪
A(a4)| ≤ |∪e∈SA(e)| ≤ 10, then|A(c1)∩A(a4)| 6= 0. Before colorx was assigned toc1

anda4, it had been available on exactly one edge of each of the threepairs. Greedily
color those three edges (none of the colors used on these three edges is colorx). Now
the three remaining uncolored incident edges each satisfy|A(e)| ≥3, so we can greedily
color them. Greedily color the three remaining edges in the orderc2,c4,c5. �

5 Conclusion

We note that it is straightforward to convert this proof to analgorithm that runs in
linear time. We assume a data structure that stores all the relevant information about
each vertex. Using breadth-first search, we can calculate the distance classes, as well
as implement each lemma in linear time.

A natural question is whether it is possible to extend the ideas of this paper to larger
∆. The best bound we could hope for from the techniques of this paper is 2∆2−3∆+2.
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It is straightforward to prove an analog of Lemma 1 that givesa strong edge-coloring
of G that uses 2∆2−3∆ +1 colors except that it leaves uncolored those edges incident
to a single vertex (however, the author was unable to prove ananalog to the “uncolored
cycle” portion of Lemma 1). IfG contains a loop, a double edge, or a vertex of degree
less than∆, then by the analog of Lemma 1G has a strong edge-coloring that uses at
most 2∆2−3∆ + 1 colors. Using the ideas of Lemma 3, we see that ifG is ∆-regular
and has girth at least 6, thenG has a strong edge-coloring that uses 2∆2 − 3∆ + 2
colors. Thus, to complete a proof for graphs with larger∆, one must consider the case
of regular graphs with girth 3, 4, or 5.

6 Acknowledgements

This paper draws heavily on ideas from a paper by Lars Andersen [1], in which he
considers the case∆(G) = 3. The present author would like to thank him for that
paper. Without it, this one would not have been written. The exposition of this paper
has been greatly improved by critique from David Bunde and Erin Chambers.

References

[1] L. D. Andersen. The strong chromatic index of a cubic graph is at most 10.Topo-
logical, algebraical and combinatorial structures. Frolı́k’s memorial volume. Dis-
crete Math., 108(1-3):231–252, 1992.
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[3] R. J. Faudree, A. Gyárfás, R. H. Schelp, and Zs. Tuza. The strong chromatic index
of graphs.Ars Combinatoria, 29B:205–211, 1990.

[4] P. Horák. The strong chromatic index of graphs with maximum degree four.Con-
temporary methods in graph theory, pages 399–403, 1990.

[5] D. B. West. Introduction to Graph Theory. Prentice Hall, second edition, 2001.

[6] D. B. West. Strong edge-coloring. Open Problems - Graph The-
ory and Combinatorics.http://www.math.uiuc.edu/˜west/openp/
strongedge.html , 2003.


