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Abstract

We study a game played on a graph G by a team of r revolutionaries and a team
of s spies. Initially, revolutionaries and then spies take positions at vertices. In each
subsequent round, each revolutionary may move to an adjacent vertex or not move,
and then each spy has the same option. The revolutionaries win by holding a meeting
of m revolutionaries at some vertex having no spy at the end of a round; the spies win
if they can prevent this forever.

Let σ(G,m, r) denote the minimum number of spies needed to win. Trivially,
min{br/mc , |V (G)|} ≤ σ(G,m, r) ≤ r − m + 1. We prove that σ(G,m, r) equals
the lower bound whenever G has a rooted spanning tree T such that every edge of G
not in T joins two vertices having the same parent in T . Such graphs include graphs
that have a dominating vertex. In general, σ(G,m, r) ≤ γ(G) br/mc, where γ(G) is
the domination number, and this bound is nearly sharp when γ(G) ≤ m.

For fixed r and m, there are chordal graphs and bipartite graphs such that
σ(G,m, r) = r −m + 1, and this holds also for the random graph. Also σ(G,m, r) =
r −m + 1 for hypercubes of dimension at least r when m = 2. For r ≥ m ≥ 3, the
number of spies needed to win on a hypercube of dimension at least r exceeds r− 3

4m
2.

For complete k-partite graphs with partite sets of size at least 2r, the leading term
in the threshold for spies to win is approximately k

k−1
r
m when k ≥ m. If G is a

complete bipartite graph with such large partite sets, then σ(G, 2, r) =
⌈ b7r/2c−3

5

⌉
and

σ(G, 3, r) = br/2c. For larger m, the threshold is between 3r
2m − 3 and (1+1/

√
3)r

m .

∗Mathematics Department, University of Illinois, jbutter2@illinois.edu, partially supported by NSF grant
DMS 08-38434, “EMSW21-MCTP: Research Experience for Graduate Students”.
†Mathematics Department, Virginia Commonwealth University, dcranston@vcu.edu.
‡Mathematics Department, University of Illinois, puleo@illinois.edu, partially supported by NSF grant

DMS 08-38434, “EMSW21-MCTP: Research Experience for Graduate Students”.
§Mathematics Department, University of Illinois, west@math.uiuc.edu, partially supported by NSA grant

H98230-10-1-0363.
¶Computer Science Department, University of Illinois, zamani@uiuc.edu.

1



1 Introduction

We study a pursuit game between two teams on a graph; it can be viewed as modeling a

problem of network security. The first team consists of r revolutionaries; the second consists

of s spies. The revolutionaries want to arrange a one-time meeting of m revolutionaries free of

oversight by spies. Initially, the revolutionaries take positions at vertices, and then the spies

do the same. In each subsequent round, each revolutionary may move to an adjacent vertex

or not move, and then each spy has the same option. Everyone knows where everyone is.

The revolutionaries win if at the end of a round there is an unguarded meeting, where a

meeting is a set of (at least) m revolutionaries on one vertex, and a meeting is unguarded

if there is no spy at that vertex. The spies win if they can prevent this forever. Let

RS(G,m, r, s) denote this game played on the graph G by s spies and r revolutionaries

seeking an unguarded meeting of size m.

The spies trivially win if s ≥ |V (G)|. The revolutionaries can form br/mc meetings

initially; if s < br/mc and s < |V (G)|, then the spies immediately lose. On the other hand,

the spies win if s ≥ r −m+ 1; they follow r −m+ 1 distinct revolutionaries, and the other

m − 1 revolutionaries cannot form a meeting. For fixed G, r,m, let σ(G,m, r) denote the

minimum s such that the spies win RS(G,m, r, s).

The game of revolutionaries and spies was invented by Jozef Beck in the mid-1990s.

Smyth promptly showed that σ(G,m, r) = br/mc when G is a tree, achieving the trivial

lower bound (a proof appears in [2]). Howard and Smyth [3] studied the game when G is

the infinite 2-dimensional integer grid with one-step horizontal, vertical, and diagonal edges.

They observed that the spy wins RS(G,m, 2m−1, 1) (the spy stays at the median position),

and hence σ(G,m, r) ≤ r − 2m + 2 for general r and m (note that always σ(G,m, r) ≤
σ(G,m, r − 1) + 1). For m = 2, they proved that 6 br/8c ≤ σ(G, 2, r) ≤ r − 2; they

conjectured that the upper bound is the correct answer.

Cranston, Smyth, and West [2] showed that σ(G,m, r) ≤ dr/me when G has at most one

cycle. Furthermore, let G be a unicyclic graph containing a cycle of length ` and t vertices

not on the cycle, where ` + t > r/m and |V (G)| > r/m. They showed that if m - r, then

σ(G,m, r) = br/mc if and only if ` ≤ max{s− t+ 2, 3}.
Say that G is spy-good if σ(G,m, r) equals the trivial lower bound br/mc for all m and r

such that r/m < |V (G)|. In Section 2, we obtain a large class of spy-good graphs. A webbed

tree is a graph G containing a rooted spanning tree T such that every edge of G not in T

joins vertices having the same parent in T . We prove that every webbed tree is spy-good.

Every graph having a dominating vertex u is a webbed tree (rooted at u). The upper

bound for such graphs generalizes: always σ(G,m, r) ≤ γ(G) br/mc, where γ(G) is the

domination number of G (the minimum size of a set S such that every vertex outside S has

a neighbor in S). Since always br/mc ≥ (r−m+ 1)/m, this upper bound is nontrivial only

when γ(G) ≤ m. In that case, it is nearly sharp: for t,m, r ∈ N with t ≤ m, we construct a
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graph with domination number t such that σ(G,m, r) > t(r/m− 1).

In contrast to spy-good graphs, we say that a graph G is spy-bad (for r revolutionaries

and meeting size m) if r − m spies cannot win, so σ(G,m, r) = r − m + 1 and the trivial

upper bound is sharp. We consider such graphs in Section 3. Some chordal graphs (and

bipartite graphs) are spy-bad (for particular r and m), and the random graph is almost

surely spy-bad.

We also study hypercubes in Section 3, showing first that the d-dimensional hypercube

Qd is spy-bad when d ≥ r and m = 2. Indeed, the subgraph of Qd consisting of the vertices

within distance k of a fixed vertex has the same property when k ≥ 2. Also, if d < r ≤ 2d/d8,

then the revolutionaries can beat (d− 1) br/dc spies on Qd (for m = 2). For general m, we

show that hypercubes are nearly spy-bad by proving that σ(Qd,m, r) ≥ r − 3
4
m2 when

d ≥ r ≥ m. Possibly the revolutionaries also win against r − cm spies for some constant c.

In Section 4, we consider complete k-partite graphs. A complete k-partite graph is r-

large if each part has at least 2r vertices, which is as many vertices as the players might

want to use. For large k, such graphs are “nearly” spy-good: σ(G,m, r) ≥ k
k−1

r
m

+ k. Also

σ(G,m, r) ≥ k
k−1

r
m+c
− k when k ≥ m and c = 1

k−1
.

Section 5 focuses on complete bipartite graphs and contains our most intricate results.

When G is an r-large complete bipartite graph, we obtain σ(G, 2, r) =
⌈ b7r/2c−3

5

⌉
and

σ(G, 3, r) = br/2c. For larger m we do not have the complete answer; we prove(
3

2
− o(1)

)
r

m
− 2 ≤ σ(G,m, r) ≤

(
1 +

1√
3

)
r

m
< 1.58

r

m
,

where the upper bound requires r
m
≥ 1

1−1/
√

3
. We conjecture that σ(G,m, r) = 3r

2m
when 3

divides m, but in other cases the revolutionaries do a bit better. That advantage should fade

as m grows, with σ(G,m, r) ∼ 3r
2m

.

Upper bounds for σ(G,m, r) are proved by giving strategies for the spies, typically to

maintain certain invariants that keep the meetings guarded. Lower bounds are proved by

strategies for the revolutionaries. One may wonder how many rounds the revolutionaries need

to win when they can win. Most of our winning strategies for revolutionaries take at most

two rounds, but on hypercubes they take m− 1 rounds. In [2], strategies for revolutionaries

proving that σ(Cn,m, r) = dr/me (when r/m > n) may take many rounds.

It would be interesting to characterize spy-good graphs. In all known spy-good graphs,

the spies can ensure that at the end of each round the number of spies on any vertex v is

at least br(v)/mc, where r(v) is the number of revolutionaries at v. Existence of such a

strategy is preserved when any vertex expands into a complete subgraph. Also, Howard and

Smyth [3] observed that σ(G,m, r) is preserved by taking the distance power of a graph.

Hence every graph obtained from some webbed tree via some sequence of distance powers

or vertex expansions is spy-good. Are these the only spy-good graphs?
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2 Spy-Good Graphs

We begin with graphs having a dominating vertex (a vertex adjacent to all others); later we

apply this result to webbed trees. Let N(v) denote the neighborhood of a vertex v. Also

N [v] = N(v) ∪ {v}, and N(S) =
⋃
v∈S N(v).

Definition 2.1. For a graph G having a dominating vertex u, the position at the end of

a round In the game RS(G,m, r, s) is stable if, for each vertex v other than u, the number

of spies at v is exactly br(v)/mc, where r(v) is the number of revolutionaries at v. The

remaining spies, if any, are at u.

Theorem 2.2. If a graph G has a dominating vertex, then σ(G,m, r) = br/mc.

Proof. Let u be a dominating vertex in G, and let s = br/mc. Since s = br/mc, a stable

position will have a spy at u if there is a meeting at u. Hence a stable position has no

unguarded meeting. When s = br/mc, there are enough spies to achieve a stable position

after the initial round. We give a strategy for the spies to achieve a stable position at the

end of each round and hence win.

Suppose the position is stable after round t. Let X be a maximal family of disjoint

sets of m revolutionaries on vertices other than u at the end of round t. Let Y be such a

maximal family after the revolutionaries move in round t + 1. Let X = {x1, . . . , xk} and

Y = {y1, . . . yk′}. In X or Y , more than one set may correspond to a single vertex in G. For

example, a vertex v having pm + q revolutionaries at the end of round t corresponds to p

elements of X, and there are p spies at v after round t. Let X ′ = {xk+1, . . . , xs}, representing

the excess spies waiting at u after round t.

Define an auxiliary bipartite graph H with partite sets X ∪X ′ and Y . For xi ∈ X and

yj ∈ Y , put xiyj ∈ E(H) if some revolutionary from meeting xi is in meeting yj (note that

xi and yj may be the same set). Also make all of X ′ adjacent to all of Y . If some matching

in H covers Y , then the spies can move so that every vertex other than u having p′m + q′

revolutionaries after round t+ 1 has exactly p′ spies on it (and the remaining spies are at u).

The existence of such a matching follows from Hall’s Theorem. For S ⊆ Y , always

X ′ ⊆ N(S), so |N(S)| = |X ′| + |N(S) ∩ X|. Consider the m|S| revolutionaries in the

meetings corresponding to S. Such revolutionaries came from meetings in |N(S) ∩ X| or

were not in any of the k meetings indexed by X. Hence m|S| ≤ m|N(S) ∩X| + (r − km).

Since |X ′| = s− k and s = br/mc,

|N(S)| ≥ |X ′|+ |S| − (br/mc − k) = s− k + |S| − (br/mc − k) = |S|,

so Hall’s Condition holds.

Corollary 2.3. Fix n,m, r with n ≥ r/m. For 0 ≤ k ≤
(
n
2

)
, there is an n-vertex graph G

with k edges such that σ(G,m, r) = br/mc.
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Proof. For k ≥ n, form G by adding the desired number of edges joining leaves of an n-

vertex star; Theorem 2.2 applies. For k ≤ n − 1, let G be a star plus isolated vertices; use

Theorem 2.2 and bac+ bbc ≤ ba+ bc.

Corollary 2.4. For any graph G, always σ(G,m, r) ≤ γ(G) br/mc, where γ(G) is the

domination number of G.

Proof. Let S be a smallest dominating set. With each vertex u ∈ S, associate br/mc spies.

Let Gu be the subgraph of G induced by N [u]; it has u as a dominating vertex. The spies

associated with u stay in Gu, following the strategy of Theorem 2.2 on Gu. When there are

fewer than r revolutionaries in Gu, the spies imagine that the missing ones are at u. When a

real revolutionary comes to vertex v in Gu from outside Gu, a revolutionary in the imagined

game moves from u to v to perform its moves. When the real revolutionary leaves Gu, the

revolutionary tracking it in the game on Gu returns to u. These moves are possible, since u

is a dominating vertex in Gu. Since the spies win each imagined game, the revolutionaries

in the real game never make an unguarded meeting at the end of a round.

As remarked in the introduction, Corollary 2.4 is of interest only when γ(G) ≤ m,

because otherwise the trivial upper bound r − m + 1 is stronger. When γ(G) ≤ m, the

bound in Corollary 2.4 cannot be improved. Since this is proved by giving a strategy for

revolutionaries, we postpone it to the next section. Meanwhile, we extend the result of

Theorem 2.2 to a more general class of graphs.

Definition 2.5. For any vertex v in a rooted tree, the parent of a non-root vertex v (written

v+) is the first vertex after v on the path from v to the root. The set of children of v

(written C(v)) is the set of neighbors of v other than its parent, and the set of descendants

of v (written D(v)) is the set of vertices whose path to the root contains v.

A webbed tree is a graph G having a rooted spanning tree T such that every edge of

G outside T joins two vertices having the same parent (called siblings). In a graph with a

dominating vertex, stabilization is the process of spies reestablishing a stable position after

a move by the revolutionaries from a stable position.

Trivially, all trees and all graphs having a dominating vertex are webbed trees. A 2-

connected graph is a webbed tree if and only if it has a dominating vertex. Every webbed

tree is a graph whose blocks have dominating vertices, but the converse does not hold.

Consider the graph obtained from two 4-cycles with a common vertex by adding chords of

the 4-cycles to create four vertices of degree 3; every block has a dominating vertex, but the

graph is not a webbed tree.

Our main result in this section is that all webbed trees are spy-good. The argument

includes a proof of the result in [2] for trees. When G is a tree, choosing any vertex as a

root expresses G as a webbed tree. The strategy for spies on rooted trees in [2] maintains
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an invariant ensuring that all meetings are guarded. We use the same invariant for webbed

trees, but in this more general class the strategy to maintain it is more subtle. After the

revolutionaries move, the spies restore the invariant by applying the strategy in Theorem 2.2

independently to each graph induced by a vertex and its children in the spanning tree.

Theorem 2.6. If G is a webbed tree, then σ(G,m, r) = br/mc.

Proof. Let T be a rooted spanning tree in G such that every edge of G not in T joins sibling

vertices in T . Let z be the root of T , and let s = br/mc. The notation for children and

descendants is as in Definition 2.5 with respect to T .

For each vertex v, let r(v) and s(v) denote the number of revolutionaries and spies on

v at the current time, respectively, and let w(v) =
∑

u∈D(v) r(u). The spies maintain the

following invariant specifying the number of spies on each vertex at the end of any round:

s(v) =

⌊
w(v)

m

⌋
−
∑
x∈C(v)

⌊
w(x)

m

⌋
for v ∈ V (G). (1)

Since
∑

x∈C(v)w(x) = w(v) − r(v), the formula is always nonnegative. Also, if r(v) ≥ m,

then s(v) ≥
⌊
w(v)
m

⌋
−
⌊
w(v)−r(v)

m

⌋
≥ 1. Hence (1) guarantees that every meeting is guarded.

To show that the spies can establish (1) after the first round, it suffices that all the

formulas sum to br/mc. More generally, summing over the descendants of any vertex v,∑
u∈D(v)

s(u) =

⌊
w(v)

m

⌋
, (2)

since bw(u)/mc occurs positively in the term for u and negatively in the term for u+, except

that bw(v)/mc occurs only positively. When v = z, the total is br/mc, since w(z) = r.

To show that the spies can maintain (1), let r′(v) denote the new number of revolutionaries

at v after the revolutionaries move, and let w′(v) =
∑

u∈D(v) r
′(v). The spies will move to

achieve the new values required by (1). To determine these moves, we will use stabilization

on each subgraph induced by a vertex and its children, independently. Let G(v) denote the

subgraph induced by C(v) ∪ {v}; note that v is a dominating vertex in G(v). We will play

a round in an imagined “local” game on each G(v).

To set up the local games, we partition the s(v) spies at each vertex v into a set of š(v)

spies to be used in the local game on G(v) and a set of ŝ(v) spies to be used in the local

game on G(v+), where š(v) and ŝ(v) sum to s(v) (when the tree is drawn with the root z at

the top, the accent indicates the direction of the relevant subgraph).

Let D∗(v) = D(v)−{v}. Let w∗(v) be the number of revolutionaries that are in D∗(v) at

the end of the previous round or are there after the revolutionaries move in the new round.

Every revolutionary counted by w∗(v) is also counted by w(v), and every revolutionary
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counted by
∑

x∈C(v)w(x) is also counted by w∗(v). These statements also hold with w′ in

place of w. Hence

w(v) ≥ w∗(v) and w∗(v) ≥
∑
x∈C(v)

w(x). (3)

By (3), ŝ(v) and š(v) are nonnegative when we define

ŝ(v) =

⌊
w(v)

m

⌋
−
⌊
w∗(v)

m

⌋
and š(v) =

⌊
w∗(v)

m

⌋
−
∑
x∈C(v)

⌊
w(x)

m

⌋
. (4)

By (1), ŝ(v) + š(v) = s(v). Note also that if v is a leaf of T , then š(v) = 0 and ŝ(v) = s(v).

For each non-leaf vertex v, the spies first imagine positions of revolutionaries in a game on

the graph G(v) that together with (4) for the spies form a stable position. After viewing the

actual moves by revolutionaries within G(v) as moves in this game, the spies stabilize as in

Theorem 2.2. We will show that the resulting positions of spies satisfy the global invariant.

The spies imagine r̂(v) spies at v in G(v+) and ř(v) spies at v in G(v), where

r̂(v) = w(v)−m
⌊
w∗(v)

m

⌋
and ř(v) = w∗(v)−

∑
x∈C(v)

w(x). (5)

By (3), the values of ř(v) and r̂(v) are nonnegative. Furthermore, we claim that (4) and (5)

together define a stable position. In G(v) we use š(v) and ř(v), and we use ŝ(x) and r̂(x) for

x ∈ C(v). By definition, ŝ(x) = br̂(x)/mc. It remains only to check the sum. We compute

the total number of revolutionaries in the local game:

ř(v) +
∑
x∈C(v)

r̂(x) = w∗(v)−
∑
x∈C(v)

w(x) +
∑
x∈C(v)

w(x)−m
∑
x∈C(v)

⌊
w∗(x)

m

⌋

Dividing by m yields w∗(v)
m
−
∑

x∈C(v)

⌊
w∗(x)
m

⌋
, whose floor is š(v) +

∑
x∈C(v) ŝ(x), as desired.

Before stabilizing, the spies also imagine moves by revolutionaries in the game on G(v).

In fact, they use the actual moves by revolutionaries in the global game. Each such move

occurs within the subgraph G(v) for one local game. The local game can model these moves

if the relevant value of r̂ or ř is at least the number of real revolutionaries leaving this vertex

and staying within this subgraph. The revolutionaries leaving v by edges in G(v+) are those

that were in D(v) and now are not; there are at most w(v)− w∗(v). By (5), r̂(v) is at least

this large. Similarly, revolutionaries leaving v via G(v) wind up in D∗(v) but were not there

previously, so the number of them is at most w∗(v)−
∑

x∈C(v)w(x), which equals ř(v).

The net change in the actual number of revolutionaries at v is r′(v)− r(v). Some of this

change is due to moves in G(v) and the rest to moves in G(v+). Moves in G(v+) enter or

leave D(v). Hence the net change in the number of revolutionaries at v due to such moves

is w′(v) − w(v). The remaining net change, due to moves between v and its children (in
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G(v)), is (r′(v)− r(v))− (w′(v)−w(v)). Therefore, after executing the actual moves in the

imagined local games, the new imagined distributions for the revolutionaries are given by

r̂′(v) = r̂(v) + w′(v)− w(v) and ř′(v) = ř(v) + (r′(v)− r(v))− (w′(v)− w(v)). (6)

The specification of r̂(v) in (5) and the change from r̂(v) to r̂′(v) in (6) immediately yield

the formula for r̂′(v) in (7). To obtain ř′(v), start with the formula for ř′(v) in (5) and adjust

by the definitions of r(v)− r(v) and w′(v)− r′(v), as indicated in (6). We compute

ř′(v) = ř(v) + (w(v)− r(v))− (w′(v)− r′(v))

= w∗(v)−
∑
x∈C(v)

w(x) +
∑
x∈C(v)

w(x)−
∑
x∈C(v)

w′(x) = w∗(v)−
∑
x∈C(v)

w′(x).

Thus

r̂′(v) = w′(v)−m
⌊
w∗(v)

m

⌋
and ř′(v) = w∗(v)−

∑
x∈C(v)

w′(x). (7)

Applying stabilization yields new spy distributions on the local games. By Theorem 2.2,

these positions are stable, so ŝ′(x) = br̂′(x)/mc for x ∈ C(v), and š′(v) is the leftover amount

for v in the local game on G(v). By the same computation that earlier showed š(v) was the

correct needed amount of spies left for v in G(v), also š′(v) =
⌊
w∗(v)
m

⌋
−
∑

x∈C(v)

⌊
w′(x)
m

⌋
.

Because each spy participated in exactly one local game, playing the local games inde-

pendently ensures automatically that each spy moves along at most one edge. Hence the

spy moves we have described are feasible. It remains only to show that (1) holds for the

resulting distribution of spies; that is

ŝ′(v) + š′(v) =

⌊
w′(v)

m

⌋
−
∑
x∈C(v)

⌊
w′(x)

m

⌋
for v ∈ V (G).

Since the terms involving w∗ again cancel, we use (7) to show that ŝ′(v) + š′(v) equals the

desired value s′(v) in the same way we used (5) to show that the invented values ŝ(v) and

š(v) sum to s(v).

Beyond webbed trees, consider cycles: σ(Cn,m, r) = dr/me when n ≥ r/m [2], so cycles

are not spy-good. In a unicyclic graph, the value of σ is dr/me or br/mc, depending on the

relationship between br/mc and the number of vertices outside the cycle [2]. Such graphs

are not spy-good, because “spy-good” requires σ(G,m, r) = br/mc for all r and m.

It is not true that all spy-good graphs are webbed trees. Let Gk denote the kth distance

power of G; that is, V (Gk) = V (G), and E(Gk) = {uv : dG(u, v) ≤ k}. The spies can

simulate one round of the game on Gk by playing k rounds on G. Thus σ(Gk,m, r) ≤
σ(G,m, r), as noted by Howard and Smyth [3]. This makes the square of a webbed tree

spy-good, even though it is not generally a webbed tree (consider G = Pn, for example).
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Say that a spy strategy is conformal if at the end of each round the number of spies at

each vertex v is at least br(v)/mc, where r(v) is the number of revolutionaries there. For any

conformal spy strategy on G, the strategy described above for Gk is also conformal. Another

graph operation also preserves the existence of conformal strategies.

Proposition 2.7. Obtain G′ from a graph G by expanding a vertex of G into a clique. If

br/mc spies win RS(G,m, r, s) by a conformal strategy, then the same holds for G′.

Proof. Let Q be the clique into which vertex v of G is expanded to form G′. The spies play

on G′ by imagining a game on G. At each round, the revolutionaries on Q in G′ are collected

onto v in G, with r(v) there after the previous round and r′(v) after the revolutionaries

move. For other vertices, the amounts before and after are as in the real game on G′.

Since
∑
baic ≤ b

∑
aic, the spies on v at the end of the round in G suffice to cover the

r′(v) revolutionaries on Q in G and can move there, since all vertices of Q have the same

neighbors outside Q that v has in G. Extra spies move to any vertex of Q. Movements of

spies from v in G can also be matched by moves in the game on G′. Other movements are

the same in G and G′. This produces a conformal strategy on G′.

Proposition 2.8. On a webbed tree G, the winning strategy in Theorem 2.6 is conformal.

Proof. Let T be a rooted spanning tree such that edges outside T join siblings in T . After

each round, the number of spies on vertex v is given by⌊
r(v) +

∑
x∈C(v)w(x)

m

⌋
−
∑
x∈C(v)

⌊
w(x)

m

⌋
.

Since
∑
baic ≤ b

∑
aic, the strategy is conformal.

These results imply that graphs obtained from webbed trees by vertex expansions and

distance powers are spy-good. For example, the square of a path is spy-good. This graph

is not a webbed tree, since it is 2-connected but has no dominating vertex (when it has at

least six vertices). On the other hand, it is an interval graph, where an interval graph is a

graph representable by assigning each vertex v an interval on the real line so that vertices are

adjacent if and only if their intervals intersect. An interval graph that is not a distance power

and has no two vertices with the same closed neighborhood is obtained from the square of

an 8-vertex path by adding on edge joining the third and sixth vertices.

Question 2.9. Do there exist spy-good graphs other than the graphs obtained from webbed

trees by any combination of vertex expansions and distance powers? In particular, is every

interval graph spy-good?

If interval graphs are not all spy-good, they may still satisfy a nice upper bound on

σ(G,m, r) in terms of r/m, like cycles do.
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3 Spy-Bad Graphs

Going beyond interval graphs to chordal graphs introduces graphs that need many spies to

prevent meetings. A split graph is a graph whose vertices can be partitioned into a clique

and an independent set. A chordal graph is a graph in which every cycle of length at least

4 has a chord; split graphs clearly have this property. Recall that for fixed r and m a graph

is spy-bad if the revolutionaries can beat r −m spies (r −m+ 1 spies trivially win).

Proposition 3.1. Given r,m ∈ N, there is a chordal graph G (in fact a split graph) such

that σ(G,m, r) = r −m+ 1.

Proof. Let Gm,r be the split graph consisting of a clique Q of size r and an independent set

S of size
(
r
m

)
, with the neighborhoods of the vertices in S being distinct m-sets in Q. We

show that r −m spies cannot win.

The revolutionaries initially occupy each vertex of Q. Let s′ be the number of vertices of

Q initially occupied by spies. The number of threatened meetings that spies on Q are not

adjacent to is
(
r−s′
m

)
. Protecting against such threats requires putting spies initially on the(

r−s′
m

)
vertices of S corresponding to these m-sets, but only r −m − s′ remaining spies are

available, and
(
r−s′
m

)
> r −m− s′ when r − s′ ≥ m.

Note that r−m+1
r/m

can be made arbitrarily large. When r = 2m, the ratio exceeds m/2.

Letting m also grow, we observe that σ(G,m, r) cannot be bounded by a constant multiple

of r/m, even on split graphs. Furthermore, the strategy for revolutionaries in Proposition 3.1

does not use any edges within the clique, so the statement remains true also for the bipartite

graph obtained by deleting those edges.

A similar construction allows us to show that Corollary 2.4 is nearly sharp. When t = m,

the upper and lower bounds are equal; when m | r, the difference between them is t− 1.

Theorem 3.2. Given t,m, r ∈ N such that t ≤ m ≤ r − m, there is a graph G with

domination number t such that σ(G,m, r) > t(r/m− 1).

Proof. First we construct a graph G. Begin with a copy of Kt,r having partite sets T of size

t and R of size r. Add an independent set U of size t
(
r
m

)
, grouped into sets of size t. With

each m-set A in R, associate one t-set A′ in U . Make all of A adjacent to all of A′, and add

a matching joining A′ to T . Note that T is a dominating set.

To show that γ(G) = t, note that t ≤ m ≤ r −m. Let S be a smallest dominating set.

For each m-set A in R, there are t vertices in U that are adjacent only to A in R. Thus if

|S ∩R| ≤ r−m, then some t-set A′ in U is undominated by S ∩R. Outside of R, the closed

neighborhoods of the vertices in A′ are pairwise disjoint, so S needs t additional vertices to

dominate them. Hence γ(G) < t requires r −m+ 1 < t, but we are given t ≤ r −m.

Now, we give a strategy for the revolutionaries to win against t(r/m− 1) spies on G. Let

s = bt(r/m− 1)c. The revolutionaries initially occupy R, one on each vertex. A spy on a

10



vertex u of U can protect all the same threats (and more) by locating at the neighbor of u

in T instead. Hence we may assume (at least for the purpose of trying to survive the next

round) that no spies locate initially in U .

Let v be a vertex of T having the fewest initial spies, and let s(v) be the number of spies

there. The revolutionaries will win by attacking the neighbors of v. Let s′ be the number of

spies initially in R, so s(v) ≤ (s− s′)/t.
The revolutionaries want to form meetings at s(v) + 1 neighbors of v that are neighbors

of no other vertices with spies. Let R′ be the set of vertices in R that do not have spies;

note that |R′| ≥ r − s′. If |R′| ≥ m(s(v) + 1), then the revolutionaries win as follows. First,

group vertices in R′ into s(v) + 1 sets of size m. For each such set A, the revolutionaries on

A move to the unique vertex uA,v in the associated subset A′ of U that is adjacent to v in

T . For each such vertex, the only neighbor having a spy is v, so the meetings cannot all be

guarded and the revolutionaries win.

It suffices to show that r− s′ ≥ m(s(v) + 1). Since v has the fewest spies among vertices

of T , we have ts(v) ≤ s − s′ ≤ t(r/m − 1) − s′. Multiplying by m/t and adding m yields

m(s(v) + 1) ≤ r − s′(m/t) ≤ r − s′, as desired, using t ≤ m at the end.

Although the construction in Theorem 3.2 depends heavily on m, it does not depend

much on r. Indeed, the construction works equally well whenever the number of revolution-

aries is at most r, because the revolutionaries can use the strategy for a smaller number of

revolutionaries on the appropriate subgraph of the graph constructed for r revolutionaries.

The same comment applies to Proposition 3.1.

Next we consider random graphs in the Erdős–Renyi binomial model G(n, p): within the

vertex set [n], pairs of vertices occur as edges independently with probability p, and we say

that an event occurs almost surely if its probability tends to 1 as n → ∞. The random

graph is almost surely spy-bad in a rather strong sense: no matter where the revolutionaries

start (on distinct vertices), there will almost surely be a vertex that m revolutionaries and

no spies can move to.

This outcome follows from an elementary property of random graphs that holds almost

surely even when p and r can vary with n in somewhat restricted ways. Motivated by Alon

and Spencer [1], say that G has the r-extension property if for any disjoint T, U ⊂ V (G)

with |T |+ |U | ≤ r, there is a vertex x ∈ V (G) adjacent to all of T and none of U . We first

say precisely why this property makes the game easy for the revolutionaries.

Proposition 3.3. If a graph G satisfies the r-extension property, and m ≤ r′ ≤ r, then G

is spy-bad for r′ revolutionaries and meeting size m.

Proof. The r revolutionaries initially occupy any set of r vertices in G. To see that r −m
spies cannot prevent them from winning on the first round, let U be the set occupied by the
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spies, and let T be the set occupied by uncovered revolutionaries. The revolutionaries on T

win by moving to the vertex x guaranteed by the r-extension property.

Alon and Spencer present the result below for constant r (Theorem 10.4.5 in the third

edition), but the proof holds more generally.

Theorem 3.4. Let ε = min{p, 1 − p}, where p is a probability that depends on n. If r =

o
(
nεr

lnn

)
and nεr →∞, then G(n, p) almost surely has the r-extension property (and hence is

spy-bad for all m and r′ with m ≤ r′ ≤ r).

Proof. Let G be distributed as G(n, p). Given T, U ⊂ V (G) with |T |+ |U | ≤ r, write t = |T |
and u = |U |. For x ∈ V (G)− (T ∪ U), let AT,U,x be the event that x is adjacent to all of T

and none of U ; note that P[AT,U,x] = pt(1− p)u ≥ εr.

Let AT,U be the event that AT,U,x fails for all x ∈ V (G)− (T ∪ U). The events AT,U,x for

different x are determined by disjoint sets of vertex pairs, so P[AT,U ] ≤ (1−εr)n−r ≤ e−ε
r(n−r).

The r-extension property fails if and only if some event of the form AT,U occurs. Hence

it suffices to show that the probability of their union tends to 0. There are 3r ways to form

T and U within a fixed r-set of vertices, since a vertex can be in either set or be omitted,

and there are
(
n
r

)
sets of size r. Hence the union consists of at most (3n)r events, each of

whose probability is at most e−ε
r(n−r). We compute

(3n)re−ε
r(n−r) = er ln(3n)−εr(n−r) = er ln 3+r lnn−εr(n−r).

Since ε ≤ 1/2, the condition r = o
(
nεr

lnn

)
implies r = o(n), so the expression inside the

exponent is dominated by −nεr and tends to −∞. Thus the bound on the probability that

the r-extension property fails tends to 0, and G(n, p) almost surely satisfies the r-extension

property.

In particular, when p is constant, G(n, p) is almost surely spy-bad whenever m ≤ r with

r ≤ c log1/ε n with c < 1. Similarly, when r is constant, G(n, p) is almost surely spy-bad

when p tends to 0 more slowly than 1/n1/r. With p ≤ 1/2, the key condition is npr →∞.

For our final class of spy-bad graphs, we consider the d-dimensional hypercube Qd: the

vertex set is {vS : S ⊆ [d]}, where [d] = {1, . . . , d}, with vS and vT adjacent when the

symmetric difference of S and T has size 1. The weight of a vertex is the size of the set in

its subscript. We will consider only vertices of small weight and hence write the subscripts

without set brackets. We show that Qd is spy-bad for m = 2 when d ≥ r. This is an exact

answer for these graphs when m = 2; for larger m, we will later obtain a lower bound using

the same basic idea.

Theorem 3.5. If G = Qd and d ≥ r, then σ(G, 2, r) = r − 1.
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Proof. The upper bound is trivial; we show that r− 2 spies cannot win. The revolutionaries

begin by occupying v1, . . . , vr, threatening meetings of size 2 at ∅ and at
(
r
2

)
vertices of

weight 2. Let t be the number of revolutionaries left uncovered by the initial placement of

the spies. Threats at
(
t
2

)
vertices must be watched by spies not on vertices of weight 1. A

spy at a vertex of weight 2 can watch one such threat; spies at vertices of weight 3 can watch

three of them. Hence s ≥ (r − t) + 1
3

(
t
2

)
if the spies stop the revolutionaries from winning

on the first round. This yields s ≥ r − 1 if t ≥ 5 or t ≤ 2.

If t = 4 and s = r − 2, then the spies need to watch six threats at weight 2 using two

spies at vertices of weight 3. A spy at a vertex of weight 3 watches the three pairs in its

name. Since the edges of a complete graph with four vertices (corresponding to the uncovered

revolutionaries) cannot be covered with two triangles, r−2 spies are not enough when t = 4.

If t = 3, then the counting bound yields s ≥ r − 2 for spies to avoid losing on the first

round. If the initial placement of r − 2 spies can watch all immediate threats, then they

must cover r − 3 revolutionaries at vertices of weight 1 and occupy one vertex at weight 3.

By symmetry, we may assume the spies locate at v123 and v4, . . . , vr.

In the first round, revolutionaries at v1 and v2 move to v∅; the others wait where they

are. To guard the meeting at v∅, a spy at some vertex of weight 1 must move there; let vj
be the vertex from which a spy moves to v∅.

In the second round, the revolutionaries at v3 and vj move to v3j, winning. The distance

from each spy to v3j after round 1 is at least 3, except for the spy at vj, so no other spy

could have moved after round 1 to watch that threat.

Extra spies on vertices of weight at least 5 cannot prevent the revolutionaries from win-

ning with the strategy given in the proof of Theorem 3.5. This enables the revolutionaries

to win against somewhat fewer spies when r is larger than the dimension.

A code with length d and distance k is a set of vertices in Qd such that the distance

between any two of them is at least k. Let A(d, k) denote the maximum size of a code with

distance k in Qd, and let B(d, k) be the number of vertices with distance less than k from

a fixed vertex in Qd. Note that B(d, k) =
∑k−1

i=0

(
d
i

)
∼ dk−1/(k − 1)! when k is fixed. If

M < 2d/B(d, k), then any code of size M having distance k can be extended by adding some

vertex, so A(d, k) ≥ 2d/dk−1.

Corollary 3.6. If d < r ≤ 2d/d8, then σ(Qd, 2, r) ≥ (d− 1) br/dc.

Proof. Let X be a code with distance 9 in Qd. The revolutionaries devote d revolutionaries

to playing the strategy in the proof of Theorem 3.5 at each of br/dc vertices of X. If the ball

of radius 4 at any such vertex has fewer than d − 1 spies in the initial configuration, then

the revolutionaries win in that ball in two rounds, since any spy initially outside that ball is

too far away to guard a meeting formed at distance 2 from the central point in round 2.

Since the code has distance 9, the balls of radius 4 are disjoint. Hence (d− 1) br/dc spies

are needed to keep the revolutionaries from winning within two rounds.
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Theorem 3.5 and Corollary 3.6 can be combined by saying that r revolutionaries win

against r − dr/de − 1 spies on Qd unless d < log2 r + 8 log2 log2 r. This result is not al-

ways sharp, since three revolutionaries easily beat one spy on Q2 by starting initially at

distinct vertices. Although four revolutionaries can threaten meetings at all eight vertices

of Q3, two spies can watch all those meetings and survive the next round. It appears that

σ(Q3, 2, 4) = 2, though we have not worked out a complete strategy for two spies against

four revolutionaries. We have no nontrivial general upper bounds on σ(Qd, 2, r) when r > d.

Next we consider the game on hypercubes when m > 2. The same idea of counting

threats made by revolutionaries placed initially at vertices of weight 1 will yield σ(Qd,m, r) >

r − 3m2/4 when d ≥ r ≥ m ≥ 3. We separate this from the argument for m = 2 for several

reasons. When m > 2, we will discard lower-order terms to simplify the argument, and they

cannot be discarded to get the optimal bound for m = 2. We also used the threat at ∅,

which we will now ignore. Some of the computations for larger m would be invalid as stated,

having m − 2 in the denominator. Finally, using the second general lemma would force a

weaker lower bound for m = 2 than we proved.

We begin by proving two lemmas, valid for m ≥ 2.

Lemma 3.7. For v ∈ V (Qd), a vertex u of weight m is within distance m − 1 of v if and

only if |u ∩ v| ≥ |v|+1
2

.

Proof. The distance between any two vertices is their symmetric difference. Always the

size of the symmetric difference is |u| + |v| − 2 |u ∩ v|. When |u| = m, it follows that

d(u, v) ≤ m− 1 is equivalent to |u ∩ v| ≥ |v|+1
2

.

Lemma 3.8. Let X be a subset of [d] with t = |X| ≥ 2m. For u ∈ V (Qd), let Yu denote the

set of vertices contained in X that have weight m and are within distance m− 1 of u in Qd.

If v is a vertex of Qd with |v| 6= 1, then |Yv| ≤
(
t−3
m−3

)
+ 3
(
t−3
m−2

)
.

Proof. To facilitate comparisons of expressions involving binomial coefficients, note that(
t−3
m−3

)
+ 3
(
t−3
m−2

)
=
(
t−2
m−2

)
+ 2
(
t−3
m−2

)
. Let bt,m denote this desired bound.

By Lemma 3.7, the vertices in Yv are the m-sets contained in X that share at least |v|+1
2

elements with v. Thus Yv = ∅ unles |v ∩X| ≥ |v|+1
2

, so we restrict our attention to that

case. If |v| = 1 and v ⊆ X, then |Yv| =
(
t−1
m−1

)
> bt,m, which explains the restriction to

|v| 6= 1. If |v| ≤ 3, then we require |v ∩X| ≥ 2. If |v ∩X| = 2, then |Yv| =
(
t−2
m−2

)
< bt,m. If

|v| = 3 with v ⊆ X, then |Yv| =
(
t−3
m−3

)
+ 3
(
t−3
m−2

)
.

For vertices of larger weight, we reduce the claim to studying vertices of odd weight. If

|v| is even and i ∈ [d]− v, then |u ∩ v| ≥ |v|+1
2

implies |u ∩ (v ∪ {i})| ≥ |v∪{i}|+1
2

, since |u ∩ v|
is an integer. Hence Yv ⊆ Yv∪{i}, and it suffices to prove that

∣∣Yv∪{i}∣∣ ≤ bt,m.

Hence we may assume that |v| is odd. Having proved the bound when |v| = 3, we may

assume that |v| is a larger odd number, and it suffices to prove that
∣∣Yv−{i,j}∣∣ ≥ |Yv|, where i
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and j are distinct elements of v. If |v| > 2m, then Yv = ∅, so we may assume |v| < 2m ≤ t.

Let v′ = v − {i, j}. It suffices to show |Yv′ − Yv| ≥ |Yv − Yv′ |. We compute both sizes.

If w ∈ Yv−Yv′ , then |w ∩ v| ≥ |v|+1
2

and |w ∩ v′| < |v′|+1
2

= |v|−1
2

. This requires {i, j} ⊂ w

and |w ∩ v′| = |v|−3
2

, and hence |w ∩ v| = |v|+1
2

. Counting the ways to choose w ∩ v′ and

w − v, which together determine w, we have

|Yv − Yv′ | =
(|v| − 2
|v|−3

2

)( |X − v|
m− |v|+1

2

)
.

If w ∈ Yv′ − Yv, then |w ∩ v′| ≥ |v′|+1
2

= |v|−1
2

and |w ∩ v| < |v|+1
2

. This requires |w ∩ v| =
|w ∩ v′| = |v|−1

2
, so i, j /∈ w. Again counting the ways to choose w ∩ v′ and w − v, we have

|Yv′ − Yv| =
(|v| − 2
|v|−1

2

)( |X − v|
m− |v|−1

2

)
.

Since |v|−3
2

+ |v|−1
2

= |v| − 2, the first factor is the same in both computations. Since

|v| < 2m ≤ t = |X|, both second factors are positive. Also, 2m − (|v| − 1) ≤ |X − v| + 1,

with equality only if v ⊆ X and t = 2m. In that case, the two second factors are the middle

binomial coefficients and are equal; otherwise, |Yv − Yv′| > |Yv′ − Yv|.

Theorem 3.9. If d ≥ r ≥ m ≥ 3 and s ≤ r − 3
4
m2, then the revolutionaries win

RS(Qd,m, r, s), so σ(Qd,m, r) > r − 3
4
m2.

Proof. Let the number of spies be r − c, where c = 3m2/4 ≥ 2m; we show that the revo-

lutionaries win. The revolutionaries initially occupy the first r vertices of weight 1 in Qd,

threatening to make meetings after m− 1 moves at the vertices in
(
[r]
m

)
. A spy watches such

a threat if its distance to the threat is at most m− 1, allowing it to arrive in time to cover

the threatened meeting.

We speak only of the position at the end of the initial placement. It suffices to show that

r − c spies cannot watch all the threats at that time. Consider an initial placement of the

r−c spies that watches the maximum number of these threats. Let X be the set of indices of

the vertices having uncovered revolutionaries. Let t = |X|; note that t ≥ c ≥ 2m. The
(
t
m

)
threats made by these uncovered revolutionaries cannot be watched by spies on singleton

vertices. We bound the number of such threats that can be watched by the t − c spies on

non-singleton vertices.

Let v be such a vertex. By Lemma 3.8, v watches at most
(
t−3
m−3

)
+ 3
(
t−3
m−2

)
of the threats

from X. Hence these vertices watch at most (t− c)[
(
t−3
m−3

)
+ 3
(
t−3
m−2

)
] threats. Since the value

of t can be set by the spies to anything between c and r, it suffices to show that for all such

t this quantity is less than
(
t
m

)
.

With
(
t−3
m−2

)
= t−m

m−2

(
t−3
m−3

)
, the bound becomes (t − c)

(
t−3
m−3

) [
1 + 3 t−m

m−2

]
. After using(

t
3

)(
t−3
m−3

)
=
(
t
m

)(
m
3

)
to substitute for

(
t−3
m−3

)
, we clear fractions and cancel m − 2 to turn
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the desired inequality into

m(m− 1)(t− c)(3t− 2m− 2) < t(t− 1)(t− 2).

Since m > 2, it suffices to show m(m− 1)(t− c)(3t− 6) < t(t− 1)(t− 2), which is equivalent

to 3m(m− 1)(t− c) < t(t− 1). Writing this as 3m(t− c) < t t−1
m−1

and noting that t
m
< t−1

m−1

when t > m, the inequality t ≥ 2m implies that it suffices to have 3m(t − c) ≤ t2/m. This

is equivalent to c ≥ t(3m2 − t)/3m2, which holds for all t when c = 3
4
m2. With this choice

of c, we have proved that no value of t allows the spies to watch all the threats.

We do not know whether the bound in Theorem 3.9 is anywhere near sharp. It seems

that the revolutionaries win against more than r− 3
4
m2 spies even with this simple strategy,

because watching all the threats with this many spies on triples requires a combinatorial

design that in general does not exist, just as in Theorem 3.5 we could not decompose K4

into two triangles. Even when there are enough spies to watch all these threats, still a more

sophisticated strategy may enable the revolutionaries to win. We think that σ(Qd,m, r) >

r − αm for some constant α when d is large.

4 Complete k-partite Graphs

In this section we obtain lower and upper bounds on σ(G,m, r) when G is a complete k-

partite graph. The lower bound requires partite sets large enough so that the revolutionaries

can always access as many vertices in each part as they might want (enough to “swarm” to

distinct vertices there that avoid all the spies). The upper bounds apply in more generality;

they don’t require large partite sets, and they require only a spanning k-partite subgraph

(if there are additional edges within parts, then spies will be able to follow revolutionaries

along them when needed).

Definition 4.1. A complete k-partite graph G is r-large if every part has at least 2r vertices.

At the revolutionaries’ turn on such a graph, an i-swarm is a move in which the revolution-

aries make as many new meetings of size m as possible in part i. All revolutionaries outside

part i move to part i, greedily filling uncovered partial meetings to size m and then mak-

ing additional meetings of size m from the remaining incoming revolutionaries. When G is

r-large, sufficient vertices are available in part i to permit this.

Theorem 4.2. Let G be an r-large complete k-partite graph. If k ≥ m, then σ(G,m, r) ≥
k
k−1

kbr/kc
m+c

− k, where c = 1/(k − 1). When k | r the bound simplifies to k
k−1

r
m+c
− k.

Proof. We may assume that k | r, since otherwise the revolutionaries can play the strategy

for the next lower multiple of k, ignoring the extra revolutionaries.
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Let t = r/k. The revolutionaries initially occupy t distinct vertices in each part. Let si
be the initial number of spies in part i. We may assume that they cover min{si, t} distinct

revolutionaries, since each vertex of part i has the same neighborhood, and within part i

these are the best locations. We compute the number of spies needed to avoid losing by

swarm on round 1.

Case 1: si > t for some i. If the revolutionaries swarm to part i, then all revolutionaries

previously in part i are covered, so new meetings consist entirely of incoming revolutionaries

and are not coverable by spies from part i. Since (k − 1)t revolutionaries arrive, at least

b(k − 1)t/mc spies must arrive from other parts to cover the new meetings. Thus

s ≥ si +

⌊
(k − 1)t

m

⌋
≥ t

(
1 +

k − 1

m

)
=
k − 1 +m

k

r

m
.

Case 2: si ≤ t for all i. For each i, part i has t− si partial meetings. Since si ≥ 0, an

i-swarm is guaranteed to fill them if (k−1)t ≥ t(m−1), which holds when k ≥ m. Hence the

new meetings include all revolutionaries except the si covered by spies in part i before the

swarm. Spies from other parts must cover b(r − si)/mc new meetings in part i. Summing

s− si ≥ (r − si −m+ 1)/m over all parts yields (k − 1 + 1/m)s ≥ k(r −m+ 1)/m, so

s ≥ k(r −m+ 1)

m(k − 1) + 1
>

k

k − 1

r

m+ c
− k.

The lower bound in Case 2 is smaller (better for spies) than the lower bound in Case 1,

so the spies will prefer to play that way. The lower bound in Case 2 is thus a lower bound

on σ(G,m, r).

The idea behind our strategies for spies is two-fold:

(1) find an invariant that prevents the revolutionaries from winning on the next round, and

(2) show that the spies can respond to the moves by revolutionaries to restore that invariant

at the end of each round.

In general, we view a position satisfying the magic invariant(s) as being “stable”, since it

allows the spies to control the situation forever. Hence we re-use this term from Section 2.

Definition 4.3. Given a game position, say that m specified revolutionaries in a meeting and

one spy covering them are bound. After specifying the bound players for all vertices hosting

meetings, the remaining spies and revolutionaries are free (we specify bt/mc meetings at a

vertex having t revolutionaries).

Let r̂i and ŝi denote the numbers of free revolutionaries and free spies in part i in the

current position of a game on a complete k-partite graph. Let r̂ and ŝ denote the total

numbers of free revolutionaries and free spies. A game position is stable if (1) all meetings

are covered, and (2) ŝ− ŝi ≥ r̂/m for each part i.
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Lemma 4.4. Let G be a graph having a spanning complete k-partite subgraph G′. If the

position at the end of the previous round was stable for G′, then the revolutionaries cannot

win in the current round on G.

Proof. After the revolutionaries move in the current round, some meetings (including old

meetings) exist. We prove that these meetings can be matched to spies on vertices equal or

adjacent to them. The spies can then move to cover all the meetings.

Create an auxiliary bipartite graph H in which partite set X is the set of vertices hosting

meetings and partite set Y is the set of spies. For x ∈ X and y ∈ Y , let xy be an edge in H

if the spy y is at a vertex of NG[x]. If H has a matching that covers X, then the spies can

move (or remain in place) to cover all meetings at the end of the current round. Here the

designation of a spies or revolutionary as free or bound indicates its status at the end of the

previous round.

It suffices to verify Hall’s Condition for a matching that covers X. For S ⊆ X, we show

that |NH(S)| ≥ |S|. Note that |X| ≤ br/mc ≤ s. If S has vertices from more than one

partite set in the spanning complete k-partite subgraph G′, then |NH(S)| = s ≥ |X|.
If S has vertices only from part i, then let t be the number of vertices in NG′ [S] that

hosted meetings before the revolutionaries moved. By stability, these vertices have bound

spies, which lie in NH(S); furthermore, ŝ − ŝi ≥ r̂/m, and all of the free spies counted by

ŝ− ŝi are also in NH(S). No spy is both free and bound, so |NH(S)| ≥ t+ r̂/m. On the other

hand, |S| ≤ r̂+tm
m

, since the numerator is an upper bound on the number of revolutionaries

that can be used to make meetings in S. Thus |S| ≤ |NH(S)|, as desired.

Theorem 4.5. If a graph G has a spanning complete k-partite subgraph, then σ(G,m, r) ≤⌈
k
k−1

r
m

⌉
+ k.

Proof. Let G′ be the specified subgraph, and let s =
⌈

k
k−1

r
m

⌉
+ k. It suffices to show that s

spies can produce a stable position at the end of each round. First, after the revolutionaries

have moved, the spies cover all newly created meetings, moving the fewest possible spies

to do so. By Lemma 4.4, the spies can do this since the previous round ended in a stable

position (also, s ≥ br/mc guarantees that the spies can do this in the initial position).

Next, the spies that are now free distribute themselves equally among the k parts of G′.

More precisely, with ŝ being the total number of free spies after the new meetings are covered

and ŝi being the number of them in part i, we have |ŝi − ŝ/m| < 1 for all i.

It suffices to show that this second step produces a stable position. In order to have

ŝ − ŝi ≥ r̂/m for all i, it suffices to have ŝj ≥ r̂/[m(k − 1)] for each j. Since the free spies

are distributed equally, it suffices for the average to be big enough: ŝ/k ≥ r̂/[m(k − 1)] + 1.

Multiplying by k, we require ŝ ≥ k
k−1

r̂
m

+ k.

We are given s ≥ k
k−1

r
m

+k. The number of bound revolutionaries is exactly m times the

number of bound spies; hence s − ŝ = (r − r̂)/m. Subtracting this equality from the given
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inequality yields

ŝ ≥ 1

k − 1

r

m
+

r̂

m
+ k ≥ k

k − 1

r̂

m
+ k,

where the last inequality uses r ≥ r̂. We now have the inequality that we showed suffices for

a stable position.

5 Complete Bipartite Graphs

Finally, let G be an r-large bipartite graph. We give lower and upper bounds on σ(G,m, r)

for fixed m. The lower bound strategies for the revolutionaries win after one or two rounds,

while the upper bounds use more delicate strategies for the spies (maintaining invariants

that prevent the revolutionaries from winning on the next round).

Since the lower bounds are much easier, we start with them, but first we compare all the

bounds in Table 1. When 3 | m, the lower bound is roughly 3
2
r/m. We believe that this

is the asymptotic answer when 3 | m. When 3 - m, the revolutionaries cannot employ this

strategy quite so efficiently, which leaves an opening for the spies to do better. Indeed, for

m = 2, the answer is roughly 7
5
r/m, a bit smaller. For larger m, the relative value of this

advantage diminishes, and we expect the leading coefficient to tend to 3/2 as m→∞.

Table 1: Bounds on σ(G,m, r)

Meeting size Lower bound Upper bound References

2
⌈ b7r/2c−3

5

⌉ ⌈ b7r/2c−3
5

⌉
Theorems 5.2 and 5.9

3 br/2c br/2c Theorems 5.3 and 5.10

m ∈ {4, 8, 10} 1
5
b7r/mc − 2 Corollary 5.4

m
⌊

1
2

⌊
r

dm/3e

⌋⌋ (
1 + 1√

3

)
r
m

+ 1 Corollary 5.4; Theorem 5.11

We first motivate the lower bounds by giving simple strategies for the revolutionaries

when m ∈ {2, 3}. Henceforth call the partite sets X1 and X2.

Example 5.1. Initially place br/2c revolutionaries in X1 and dr/2e revolutionaries in X2.

Regardless of where the spies sit, swarming revolutionaries can form at least b(r − 1)/(2m)c
new meetings on either side that can only be covered by spies from the other side, so the

initial placement must satisfy s1 ≥ b(r − 1)/(2m)c and s2 ≥ br/(2m)c, where si is the

number of spies in Xi.

However, the uncovered revolutionaries can also be used to form meetings. If m = 2, then

the revolutionaries can form b(r − si)/2c meetings when swarming to Xi, so the spies lose

unless s3−i ≥ b(r − si)/2c for both i. Summing the inequalities yields s1 + s2 ≥ 2(r − 1)/3.
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For m = 3, considering only r of the form 4k, where k ∈ N, we show that the revo-

lutionaries win against 2k − 1 spies. Initially there are 2k revolutionaries in each part, on

distinct vertices. We may assume s1 ≤ s2, so s1 ≤ k − 1. Since there are only 2k − 1 − s1

spies in X2, there are at least s1 + 1 uncovered revolutionaries in X2. Since s1 ≤ k − 1,

we can use 2(s1 + 1) revolutionaries from X1 to form meetings of size 3 with the uncovered

revolutionaries in X2. Since only s1 spies are available to cover these meetings, the spies lose.

Thus σ(G, 3, r) ≥ r/2 when 4 | r. However, when r = 4k + 2, the revolutionaries cannot

immediately win against 2k spies by this construction. With 2k + 1 revolutionaries in each

part and k spies sitting on revolutionaries in each part, swarming revolutionaries can only

make k new meetings in either part, which can be covered by the spies.

The symmetric strategy in Example 5.1 is optimal when m = 3 and 4 | r. However,

when m = 2 and when m = 3 with r = 4k + 2, the revolutionaries can do better using an

asymmetric strategy that takes advantage of moving away from spies. When m = 3 and

r = 4k + 2, this other strategy just increases the threshold by 1, to the value br/2c that we

will show is optimal for all r. For m = 2, however, the better strategy increases the leading

term from 2r/3 to 7r/10.

Recall that the partite sets are X1 and X2 and that a vertex (or meeting) is covered if

there is a spy there. Say that a spy is lonely when at a vertex with no revolutionary.

Theorem 5.2. If G is an r-large complete bipartite graph, then σ(G, 2, r) ≥
⌈ b7r/2c−3

5

⌉
.

Proof. We present a strategy for the revolutionaries and compute the number of spies needed

to resist it. The revolutionaries start at r distinct vertices in X1. In response, at least br/2c
spies must start in X1, since otherwise the revolutionaries can next make br/2c meetings at

uncovered vertices in X2 and win.

In the first round, br/2c revolutionaries move from X1 to X2, occupying distinct vertices.

They leave from vertices of X1 that are covered by spies (as much as possible), so after they

move at least br/2c spies in X1 are lonely. Now the spies move; let si be the number of spies

in Xi after they move (for i ∈ {1, 2}). Let c be the number of revolutionaries in X1 that

are now covered by spies. Since at most s2 spies leave X1, there remain at least br/2c − s2

lonely spies in X1. We conclude that c ≤ s1 − br/2c+ s2.

In round 2, the revolutionaries have the opportunity to swarm to X1 or X2. Since there

are br/2c revolutionaries in X2, there are at most br/2c+ 1 uncovered revolutionaries in X1

(on distinct vertices), so swarming revolutionaries can make meetings with all but at most

1 uncovered revolutionary in X1. The revolutionaries can therefore make b(r − c)/2c new

meetings in X1. These meetings can only be covered by spies moving from X2, so the spies

lose unless s2 ≥ b(r − c)/2c.
If the revolutionaries swarm to X2, then the new meetings there can only be covered by

spies coming from X1. At most s2 revolutionaries in X2 are covered by spies. Since dr/2e
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revolutionaries come from X1, they can make meetings with all uncovered revolutionaries in

X2, so the spies lose unless s1 ≥ b(r − s2)/2c.
Adding twice the lower bound on s1 to the lower bound on s2 (with c ≤ s1−br/2c+ s2),

s2 + 2s1 ≥
b3r/2c − s1 − s2 − 1

2
+ r − s2 − 1.

The inequality simplifies to 5(s1 + s2) ≥ b7r/2c − 3, as desired.

The general lower bound in Corollary 5.4 uses the formula for m = 3, which we study

first. The key is that r/2 − 1 spies are not enough when r ≡ 2 mod 4; we first sketch the

idea in an easy case. Suppose that r = 4k + 2 ≡ 6 mod 12. The revolutionaries start at

distinct vertices in X1. Suppose that all s spies start in X1 and that there are enough of

them to win. In round 1, 2r/3 revolutionaries move to X2, leaving the spies in X1 lonely.

Let s2 be the number of spies that move to X2 after round 1, leaving s1 spies in X1. The

revolutionaries in X2 now can make r/3 meetings with the remaining r/3 revolutionaries in

X1, so s2 ≥ r/3. Since s2 ≤ 2k = r/2− 1, at least r/6 + 1 revolutionaries remain uncovered

in X2. The remaining r/3 revolutionaries in X1 can make meetings with r/6 of them in

round 2. Hence s1 ≥ r/6, and s = s1 + s2 ≥ r/2.

The initial placement only requires r/3 spies in X1, not r/2. We must allow for initial

placement of x spies in X2, where 0 ≤ x ≤ r/6. The x spies originally in X2 can move to X1

in round 1 and cover revolutionaries there; this prevents the revolutionaries from threatening

as many meetings by a swarm to X1. In response, fewer than 2r/3 revolutionaries move to

X2 in round 1, and yet we can guarantee more threatened meetings in the swarm to X2.

Theorem 5.3. If G is an r-large complete bipartite graph, then σ(G, 3, r) ≥ br/2c.

Proof. Since br/2c = b(r + 1)/2c when r is even, and having an extra revolutionary cannot

reduce σ, it suffices to prove the lower bound when r is even. Example 5.1 proves it when

4 | r, so only the case r = 4k + 2 remains. We show that 4k + 2 revolutionaries can win

against 2k spies.

The revolutionaries start at r distinct vertices of X1, so at least br/3c spies must start in

X1. Let x be the initial number of spies in X2, with 2k − x spies in X1. Since X1 contains

at least br/3c spies, x ≤ d(2k − 2)/3e = dr/6e − 1. Define j by r − x ≡ j mod 3 with

j ∈ {0, 1, 2}. In round 1, p revolutionaries move to X2, where p = 2(r − x− j)/3. Note that

p ≥ 2k − x, so all spies in X1 are now lonely. The number of revolutionaries remaining in

X1 is r − p, which equals (r + 2x+ 2j)/3.

Let si be the number of spies in Xi after the spies respond in round 1. Since at most x

spies move from X2 to X1 in round 1, the number of uncovered revolutionaries in X1 is now

at least (r − x+ 2j)/3. With p = 2(r − x− j)/3, there are enough revolutionaries in X2 to

threaten meetings with (r − x− j)/3 vertices in X1. Hence s2 ≥ (r − x− j)/3.
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Now consider a swarm to X2. Since there were 2k − x spies in X1 initially, the number

who moved to X2 and covered revolutionaries after round 1 is at most 2k − x. Hence X2

has at least p− 2k+ x uncovered revolutionaries. The r− p revolutionaries remaining in X1

can generate enough pairs to make meetings with this many uncovered revolutionaries in X2

when j 6= 0. We have r − p = (r + 2x+ 2j)/3 and p− 2k + x = (r + 2x+ 6− 4j)/6.

If j = 0, then we can only make p − 2k + x − 1 meetings in the swarm to X2, so

s1 ≥ (r+2x)/6, and we obtain s2+s1 ≥ r−x
3

+ r+2x
6

= r/2. If j = 1, then we can make p−2k+x

meetings in the swarm, so s1 ≥ (r+2x+2)/6, and we obtain s2 +s1 ≥ r−x−1
3

+ r+2x+2
6

= r/2.

Finally, if j = 2, then the same computation yields only s ≥ r−x−2
3

+ r+2x−2
6

= r/2 − 1.

However, equality holds only if all 2k − x spies initially in X1 move to X2 in round 1 to

cover revolutionaries. Only x spies remain in X1 to guard the swarm to X2 that makes

(r + 2x − 2)/6 meetings. The inequality x ≥ (r + 2x − 2)/6 requires x ≥ (r − 2)/4, but

guarding the initial position required x < r/6.

Corollary 5.4. If G is an r-large complete bipartite graph, then σ(G,m, r) ≥
⌊

1
2

⌊
r

dm/3e

⌋⌋
.

If m is even, then σ(G,m, r) ≥ 1
5
b7r/mc − 2.

Proof. Let m′ = dm/3e. The revolutionaries group into cells of size m′; each cell moves

together, modeling one player in a game with meeting size 3. When three of these cells

converge to make an unguarded meeting, the revolutionaries win the original game. The r

revolutionaries make br/m′c such cells and ignore extra revolutionaries. By Theorem 5.3,

the number of spies needed to keep the revolutionaries from winning is at least bbr/m′c /2c.
For even m, let m′ = m/2. The revolutionaries can group into br/m′c cells of size

m′ and play a game with meeting size 2. By Theorem 5.2, the lower bound is now
1
5
(b(7 b2r/mc /2− 3c). This improves on the bound above when m ∈ {4, 8, 10}.

Finally, we consider upper bounds for σ(G,m, r) when G is an r-large bipartite graph,

proved by giving strategies for the spies.

Definition 5.5. Henceforth, always G is a r-large bipartite graph with partite sets X1

and X2, and we consider the game RS(G,m, r, s). Any statement that includes index j is

considered for both j = 1 and j = 2. The numbers of revolutionaries and spies in part j at

the beginning of the current round are denoted by rj and sj, respectively, and the number

of revolutionaries in part j that are on vertices covered by spies is denoted by cj. The

corresponding counts at the end of the round are denoted by r′j, s
′
j and c′j.

A spy that moves to Xj during the round is new ; spies that remained in Xj and did not

move are old. A meeting formed at a vertex in Xj during the round is new if at the end

of the previous round there was no meeting there; a meeting is old if it is not new. The

revolutionaries swarm Xj in a round if at the end of the round all revolutionaries are in Xj.
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Definition 5.6. A greedy migration strategy is a strategy for the spies having the following

properties. First, no vertex ever has more than one spy on it. Next, after the revolutionaries

move during the current round and the spies compute the new desired distribution s′1, s
′
2 of

spies on X1 and X2, they move to reach that distribution as follows. Since s′1 + s′2 = s1 + s2,

by symmetry there is an index i ∈ {1, 2} such that s′i ≤ s3−i. The spies reach their locations

for the end of the round via the following steps.

(1) s′i spies move away from X3−i, iteratively leaving vertices that now have the fewest

revolutionaries among those in X3−i.

(2) All si spies previously on Xi leave Xi and move to uncovered vertices in X3−i, itera-

tively covering vertices having the most revolutionaries.

(3) The s′i spies that left X3−i now move to uncovered vertices in Xi, iteratively covering

vertices having the most revolutionaries.

Remark 5.7. At the end of each round under a greedy migration strategy, for each j either

all spies in Xj are new, or all spies that were in X3−j have migrated to part j. In the

specification of the movements in Definition 5.6, the former occurs when j = i, and the

latter occurs when j = 3 − i. In the first case, there are s′j new spies in Xj; in the second

case, there are s3−j new spies in Xj. In particular, after each round at least min{s′j, s3−j}
spies in Xj are new.

Lemma 5.8. Any greedy migration strategy in RS(G,m, r, s) is a winning strategy for the

spies if it prevents the revolutionaries from winning by swarming a part.

Proof. Consider the end of a round, with rj and sj counting the revolutionaries and spies in

Xj. We show that if the revolutionaries do not win by swarming on the next round, then all

meetings in Xj are now covered. Thus the hypothesis implies that at the end of every round

all meetings are covered.

If the rj revolutionaries on part j swarm to X3−j, then they can form at least brj/mc
new meetings at uncovered vertices. Such meetings can only be covered by new spies coming

from Xj, so the hypothesis requires sj ≥ brj/mc. Since greedy migration places spies on rj
to maximize coverage, if there are brj/mc new spies they cover all meetings. Hence we may

assume that not all spies in Xj are new.

Now Remark 5.7 implies that all the spies that were previously in X3−j migrated to Xj

in this round. We claim that the number s3−j of those spies is at least the number of new

meetings in Xj. Otherwise, the revolutionaries have now won by making a number of new

meetings that is at most what they can make by swarming Xj on this round, and the s3−j

spies could not defend against that swarm. Hence it suffices to show that the old meetings

in Xj continue to be covered by old spies.

Suppose that a spy leaves an old meeting in Xj. Since greedy migration picks departing

spies to minimize the number of revolutionaries uncovered, all old spies that remain in part
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j are covering meetings. All the new spies are placed in Xj to maximize coverage, so if there

is an uncovered meeting in Xj at the end of this round, then every spy in Xj is covering a

meeting. This now contradicts the value of rj, since sj ≥ brj/mc.

Theorem 5.9. If G is an r-large complete bipartite graph, then σ(G, 2, r) ≤
⌈ b7r/2c−3

5

⌉
.

Proof. Let s =
⌈ b7r/2c−3

5

⌉
; we give a winning strategy for the spies in RS(G, 2, r, s). Let

α = s − br/2c and β = b(r − α)/2c. Later we will use the following inequalities: α ≤ β,

α + β ≤ s, and b(r + β)/2c ≤ s. These inequalities can be checked explicitly for each

congruence class modulo 10. The first two are loose, since α ≈ 2r/10, β ≈ 4r/10, and

s ≈ 7r/10, but the third is delicate, with equality holding in except in two congruence

classes and the floor function needed for correctness in four congruence classes.

During the game, if the revolutionaries swarm X3−j in the current round, then they

generate at most min{rj,
⌊ r−c3−j

2

⌋
} new meetings. The spy strategy will ensure

sj ≥ min

{
rj,

⌊
r − c3−j

2

⌋}
for j ∈ {1, 2}, (A)

and hence it will keep the revolutionaries from winning by a swarm. The spies move by

greedy migration after computing the new values s′1 and s′2 in response to r′1 and r′2. By

Lemma 5.8, the spies win by a greedy migration strategy that keeps the revolutionaries from

winning by swarm.

The spies determine s′1 and s′2 via three cases, using the first that applies. Always

s′1 + s′2 = s.

Case 1: If r′i ≤ α for some i ∈ {1, 2}, then s′i = α.

Case 2: If si ≥ min{r′3−i, β} for some i ∈ {1, 2}, then s′3−i = min{r′3−i, β}.

Case 3: Otherwise, s′i = s3−i and s′3−i = si.

It remains to prove (A). In order to do so, we first prove

sj ≥ α for j ∈ {1, 2}. (B).

Trivially the spies can satisfy both (A) and (B) in round 0. Assuming that these invariants

hold before the current round begins, we will show that they also hold when it ends.

Invariant (B) is preserved. In Case 1, s′i = α and s′3−i = br/2c > α. In Case 3,

s′j = s3−j ≥ α. In Case 2, r′3−i > α, so s′3−i = min{r′3−i, β} ≥ α, and s′i = s − s′3−i =

s−min{r′3−i, β} ≥ s− β ≥ α.

Invariant (A) is preserved. In Case 1, s′i = α ≥ r′i ≥ min{r′i,
⌊
r−c′3−i

2

⌋
} and s′3−i =

br/2c ≥
⌊
r−c′3−i

2

⌋
≥ min{r′i,

⌊
r−c′3−i

2

⌋
}.
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In Case 2 with si ≥ min{r′3−i, β}, first consider j = 3− i. We have s′3−i = min{r′3−i, β}.
If s′3−i = r′3−i, then s′3−i is already big enough, so suppose s′3−i = β. By Remark 5.7, at

least min{s′i, s3−i} spies in Xi are new. By (B), this quantity is at least α, and Case 2

requires r′i > α. Hence the new spies cover at least α revolutionaries, and c′i ≥ α yields

s′3−i = β =
⌊
r−α

2

⌋
≥ min{r′3−i,

⌊
r−c′i

2

⌋
}.

Now consider j = i. By Remark 5.7, at least min{si, s′3−i} spies in Xi are new, and

in Case 2 each of si and s′3−i is at least min{r′3−i, β}. Since spies cover greedily, c′3−i ≥
min{r′3−i, β} = s′3−i. Also s′3−i ≤ β, so

s′i = s− s′3−i ≥
⌊
r + β

2

⌋
− s′3−i ≥

⌊
r − s′3−i

2

⌋
≥
⌊
r − c′3−i

2

⌋
≥ min

{
r′i,

⌊
r − c′3−i

2

⌋}
. (8)

Finally, s′j = s3−j < min{r′j, β} in Case 3, since Case 2 does not apply. Since all spies

move and s′j ≤ r′j, we have c′j ≥ s′j. Hence for each j the computation in (8) is valid.

The method for the upper bound when m = 3 is essentially the same.

Theorem 5.10. If G is an r-large complete bipartite graph, then σ(G, 3, r) ≤ br/2c.

Proof. We present a greedy migration strategy for br/2c spies that keeps the revolutionaries

from winning by swarming; by Lemma 5.8 it is a winning strategy for the spies.

Define rj, sj, cj at the start of a round and r′j, s
′
j, c
′
j at the end of the round in the same

way as before. Also, we need to know the maximum number of revolutionaries together

on an uncovered vertex in Xj at the beginning and end of the round; let these values be

uj and u′j. If the revolutionaries have not already won, then uj, u
′
j ≤ 2. Let s = br/2c,

α = br/2c − br/3c, and β = s− b(r − α)/3c. We will want the inequalities β ≥
⌊
r−2α

3

⌋
and

β ≤
⌈ br/2c

2

⌉
. The latter is always satisfied (the left side is about 2r/9 and the right side is

about r/4), but both sides of the first inequality are about 2r/9. Checking each congruence

class modulo 18 shows that β ≥
⌊
r−2α

3

⌋
except when r ≡ 3 mod 18.

The values s′1 and s′2 that determine the movements of spies in this round under the

greedy migration strategy are computed as follows, with s′3−i = s − s′i always. Note that

since r′1 + r′2 = r, one case below holds for exactly one index, except when r′1 = r′2 = r/2, in

which case it does not matter which we call i.

Case 1: If r′i ≤ α for some i ∈ {1, 2}, then s′i = α.

Case 2: If α < r′i ≤ β for some i ∈ {1, 2}, then s′i = r′i.

Case 3: If β < r′i ≤ 2β for some i ∈ {1, 2}, then s′i = β, except s′i = β + 1 when si = α.

Case 4: If 2β < r′i ≤ br/2c for some i ∈ {1, 2}, then s′i = br′i/2c.
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Let fj = min{
⌊ r−c3−j

3

⌋
,
⌊ rj

3−u3−j

⌋
}. During the game, if the revolutionaries swarm X3−j

in the current round, then they generate at most fj new meetings. Hence it suffices to show

that the strategy specified above always ensures

sj ≥ fj for j ∈ {1, 2}. (A)

As in Theorem 5.9, in order to prove (A) we will also need

sj ≥ α for j ∈ {1, 2}. (B)

Place the spies to satisfy (A) and (B) in round 0. In each Case of play, α ≤ s′i ≤ br/4c ≤ s−α,

so (B) is preserved. Now s1, s2, s
′
1, s
′
2 ≥ α, and we study (A).

With f ′j being the value of fj at the end of the round, we need s′j ≥ f ′j. By Remark 5.7,

each part receives at least α new spies in each round. In Cases 2, 3, and 4 each part contains

at least α revolutionaries, so c′j ≥ α in those cases. Also s′j ≥
⌊
r′j/3

⌋
in each Case. Since

s′j ≥
⌊
r′j/3

⌋
=
⌊
r′j/(3− u′3−j)

⌋
when u′3−j = 0, we may assume u′j ∈ {1, 2}.

In addition, since the greedy strategy places new spies in Xj to maximize coverage,

leaving an uncovered vertex with u′j revolutionaries implies that each of the (at least) α new

spies covers at least u′j revolutionaries at its vertex. Hence c′j ≥ u′jα.

Invariant (A) is preserved:

In Case 1, s′i = α ≥ r′i ≥ f ′i and s′3−i = s− α ≥ br/3c ≥ f ′3−i.

In Case 2, s′i = r′i ≥ f ′i . Also, c′i ≥ α and s′3−i = s− r′i ≥ s− β =
⌊
r−α

3

⌋
≥
⌊ r−c′i

3

⌋
≥ f ′3−i.

In Case 3, again c′i ≥ α, so s′3−i = s− β =
⌊
r−α

3

⌋
≥
⌊ r−c′i

3

⌋
≥ f ′3−i.

In Case 3 or Case 4, if u′3−i = 1, then s′i ≥ br′i/2c =
⌊ r′i

3−u′3−i

⌋
≥ f ′i . If u′3−i = 2, then

c′3−i ≥ 2α. Hence s′i ≥ β ≥
⌊
r−2α

3

⌋
≥
⌊ r−c′3−i

3

⌋
≥ f ′i , with the exception that β =

⌊
r−2α

3

⌋
− 1

when r ≡ 3 mod 18. Either s′i > β, which suffices, or si > α. In the latter case, there are

more than α new spies on X3−j, so c′3−i ≥ 2α + 2, which is enough to fix the problem since

we are only worried when r ≡ 3 mod 18.

In Case 4, if u′i = 1, then s′3−i = s −
⌊ r′i

2

⌋
≥
⌊ r′3−i

2

⌋
=
⌊ r′3−i

3−u′i

⌋
≥ f ′3−i. If u′i = 2, then

c′i ≥ 2α. Now s′3−i = s−
⌊ r′i

2

⌋
≥
⌊
r
2

⌋
−
⌊ br/2c

2

⌋
=
⌈ br/2c

2

⌉
≥
⌊
r−2α

3

⌋
≥
⌊ r−c′i

3

⌋
≥ f ′3−i.

Theorem 5.11. If G is an r-large complete bipartite graph, and r
m
≥ 1

1−1/
√

3
, then

σ(G,m, r) ≤ (1 + 1√
3
) r
m

+ 1.

Proof. For s ≥ (1 + 1√
3
) r
m

+ 1, we present a greedy migration strategy for s spies that keeps

the revolutionaries from winning by swarming. As usual, rj and sj count the revolutionaries

and spies in Xj to begin a round, r′j counts the revolutionaries after they move, and s′j is

the number of spies to be computed for Xj to end the round. To determine s′1 and s′2, the
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spies compute x, α, u1, and u2 (not necessarily integers) such that

x ≤ br/mc , x+ r/m+ 1 ≤ s, and (9)

α = x+ r/m− r − u1x

m
= x+ r/m− r′2

m− u1

=
r′1

m− u2

=
r − u2x

m
. (10)

We will show that such numbers always exist. Now s′1 and s′2 are computed as follows:

Case 1: If α ≤ x, then s′1 = dxe and s′2 = s− s′1.

Case 2: If α > br/mc, then s′1 = br/mc and s′2 = s− s′1.

Case 3: If x < α ≤ br/mc, then s′1 = dαe and s′2 = s− s′1.

Since always s′j ≥ x, greedy migration moves at least dxe new spies to each part in each

round, by Remark 5.7. Consider a swarm. If all uncovered vertices in Xj have at most uj
revolutionaries, then swarming Xj generates at most r′3−j/(m − uj) new meetings. If some

uncovered vertex in Xj has more than uj revolutionaries, then by greedy migration at least

x spies in Xj have covered more than uj revolutionaries each, and swarming Xj forms at

most (r − ujx)/m new meetings. Hence swarming Xj fails to win if

s′3−j ≥ max

{
r′3−j

m− uj
,
r − ujx
m

}
. (11)

For j = 2, both quantities on the right in (11) equal α, so the condition is equivalent to

s′1 ≥ α, which holds in Cases 1 and 3. In Case 2, s′1 = br/mc, which always protects against

swarming X2 since at most br/mc meetings can be made.

For j = 1, both quantities on the right in (11) equal x + r/m − α, so the condition is

equivalent to s′2 ≥ x+ r/m− α. Since s− 1 ≥ x+ r/m, proving s′2 ≥ s− 1− α shows that

swarming X1 is ineffective. In Case 1, s′2 > r/m, which suffices. In Case 2 or 3, s′1 ≤ dαe, so

s′2 ≥ s− dαe > s− 1− α, as desired.

It remains to show that such numbers exist. Solving (10) yields

x =

√
9r2 + 12r′1r − 12r′1

2

6m

u1 =
r +mx−

√
r2 + 2rxm+ x2m2 − 4xr′1m

2x
and

u2 =
r +mx−

√
r2 − 2rxm+ x2m2 + 4xr′1m

2x
.

Since x ≤ r/(
√

3m), the inequalities in (9) hold when r
m
≥ 1

1−1/
√

3
.
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