MATH 300

FINAL EXAM

Name: _____

R. Hammack

Score: _____

Directions: Prove the following statements in the space provided. To get full credit you must show all of your work. Use of calculators is **not** allowed on this test.

1. Prove that if A, B and C are nonempty sets and $A \times B = A \times C$, then B = C.

2. Prove that if x and y are real numbers that are both greater than zero, then $\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$. (Suggestion: consider proof by contradiction or contrapositive.) 3. Suppose $x \in \mathbb{Z}$. Prove 7x - 3 is even if and only if x is odd.

4. Prove or disprove: If A and B are nonempty sets, then $\mathscr{P}(A) \cap \mathscr{P}(B) = \mathscr{P}(A \cap B)$.

5. Prove or disprove: If A and B are sets with $A \neq B$, and $A \subseteq B$, then |A| < |B|.

6. Prove or disprove: If an equivalence relation on a set A has finitely many equivalence classes, then A is finite.

7. Suppose a, b and c are integers. Prove that if a|b and a|(b+c), then a|c.

8. Suppose A and B are sets. Use the technique of contrapositive proof to prove the following: If $A \times B = \emptyset$, then $A = \emptyset$ or $B = \emptyset$. 9. Prove that if $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

10. Prove that $\sqrt{2}$ is irrational.

11. Suppose R is a transitive relation on a set A, and $x \not R x$ for all $x \in A$. Show that if xRy, then $y \not R x$.

The questions on this page involve the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined as f((x, y)) = (x + y, x)

12. Prove that f is injective.

13. Prove that f is surjective.

14. Find a formula for f^{-1}

15. Use mathematical induction to prove $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{N}$.

16. Use mathematical induction to prove $4|(5^n - 1)$ for every $n \in \mathbb{N}$.

17. Use mathematical induction to prove $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$ for every $n \in \mathbb{N}$.

18. Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$. Prove that $|\mathbb{R}^+| = |\mathbb{R}|$. (Suggestion: use the definition of what it means for two sets to have the same cardinality, combined with your knowledge of algebra and functions)

- 19. This problem concerns 4-letter codes that can be made from the letters A,B,C,D,E, ..., Z of the English Alphabet.
 - (a) How many such codes can be made?
 - (b) How many such codes are there that have no two consecutive letters the same?

20. How many 9-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 if repetition is not allowed and all the odd digits occur first (on the left) followed by all the even digits? (i.e. 1375980264 is such a number, but 0123456789 is not.)