Name: \qquad R. Hammack

Score: \qquad

Directions: Prove the following statements in the space provided. To get full credit you must show all of your work. Use of calculators is not allowed on this test.

1. Prove that if A, B and C are nonempty sets and $A \times B=A \times C$, then $B=C$.
2. Prove that if x and y are real numbers that are both greater than zero, then $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$. (Suggestion: consider proof by contradiction or contrapositive.)
3. Suppose $x \in \mathbb{Z}$. Prove $7 x-3$ is even if and only if x is odd.
4. Prove or disprove: If A and B are nonempty sets, then $\mathscr{P}(A) \cap \mathscr{P}(B)=\mathscr{P}(A \cap B)$.
5. Prove or disprove: If A and B are sets with $A \neq B$, and $A \subseteq B$, then $|A|<|B|$.
6. Prove or disprove: If an equivalence relation on a set A has finitely many equivalence classes, then A is finite.
7. Suppose a, b and c are integers. Prove that if $a \mid b$ and $a \mid(b+c)$, then $a \mid c$.
8. Suppose A and B are sets. Use the technique of contrapositive proof to prove the following: If $A \times B=\emptyset$, then $A=\emptyset$ or $B=\emptyset$.
9. Prove that if $a \equiv 1(\bmod 5)$, then $a^{2} \equiv 1(\bmod 5)$.
10. Prove that $\sqrt{2}$ is irrational.
11. Suppose R is a transitive relation on a set A, and $x \not R x$ for all $x \in A$. Show that if $x R y$, then $y \not R x$.

The questions on this page involve the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined as $f((x, y))=(x+y, x)$
12. Prove that f is injective.
13. Prove that f is surjective.
14. Find a formula for f^{-1}
15. Use mathematical induction to prove $1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all $n \in \mathbb{N}$.
16. Use mathematical induction to prove $4 \mid\left(5^{n}-1\right)$ for every $n \in \mathbb{N}$.
17. Use mathematical induction to prove $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!=(n+1)!-1$ for every $n \in \mathbb{N}$.
18. Let $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$. Prove that $\left|\mathbb{R}^{+}\right|=|\mathbb{R}|$.
(Suggestion: use the definition of what it means for two sets to have the same cardinality, combined with your knowledge of algebra and functions)
19. This problem concerns 4-letter codes that can be made from the letters A,B,C,D,E, ..., Z of the English Alphabet.
(a) How many such codes can be made?
(b) How many such codes are there that have no two consecutive letters the same?
20. How many 9 -digit numbers can be made from the digits $1,2,3,4,5,6,7,8,9$ if repetition is not allowed and all the odd digits occur first (on the left) followed by all the even digits? (i.e. 1375980264 is such a number, but 0123456789 is not.)

