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1. (14 points) Suppose A, B and C are sets, and C 6= ∅. Prove that A× C ⊆ B × C if and only if A ⊆ B.

Proof. First we will prove that if A× C ⊆ B × C, then A ⊆ B.
We use direct proof. Suppose A× C ⊆ B × C.

To show A ⊆ B, suppose a ∈ A. Since C 6= ∅, there is an element c ∈ C
Therefore (a, c) ∈ A× C by definition of the Cartesian product.
As A× C ⊆ B × C, it follows that (a, c) ∈ B × C.
From this, we get a ∈ B by definition of the Cartesian product.
We’ve now shown a ∈ A implies a ∈ B, so A ⊆ B.

This completes the proof that if A× C ⊆ B × C, then A ⊆ B.

Conversely, we need to prove that A ⊆ B implies A× C ⊆ B × C.

We use direct proof. Suppose A ⊆ C.

We need to show A× C ⊆ B × C.
Thus assume (a, b) ∈ A× C.
Then a ∈ A and b ∈ C by definition of the Cartesian product.
Because A ⊆ B, it follows from a ∈ A that also a ∈ B.
Now we have a ∈ B and c ∈ C, so (a, c) ∈ B × C.
From this it follows that A× C ⊆ B × C.

This completes the proof that if A ⊆ B, then A× C ⊆ B × C.



2. Suppose A, B,C and D are sets.

(a) (10 points) Prove that (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Proof. Suppose (a, b) ∈ (A×B) ∪ (C ×D).
By definition of union, this means (a, b) ∈ (A×B) or (a, b) ∈ (C ×D).
We examine these two cases individually.

Case 1. Suppose (a, b) ∈ (A×B). By definition of ×, it follows that a ∈ A and b ∈ B.
From this, it follows from the definition of ∪ that a ∈ A ∪ C and b ∈ B ∪D.
Again from the definition of ×, we get (a, b) ∈ (A ∪ C)× (B ∪D).

Case 2. Suppose (a, b) ∈ (C ×D). By definition of ×, it follows that a ∈ C and b ∈ D.
From this, it follows from the definition of ∪ that a ∈ A ∪ C and b ∈ B ∪D.
Again from the definition of ×, we get (a, b) ∈ (A ∪ C)× (B ∪D).

In either case, we obtained (a, b) ∈ (A ∪ C)× (B ∪D),
so we’ve proved that (a, b) ∈ (A×B) ∪ (C ×D) implies (a, b) ∈ (A ∪ C)× (B ∪D).

Therefore (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

(b) (10 points) Give a counterexample showing (A×B)∪ (C ×D) = (A∪C)× (B ∪D) is not always true.

Let A = {a}, B = {b}, C = {c}, and D = {d}.
Then (A×B) ∪ (C ×D) = {(a, b)} ∪ {(c, d)} = {(a, b), (c, d)}.
Also, (A ∪ C)× (B ∪D) = {a, c} × {b, d} = {(a, b), (a, d), (c, b), (c, d)}.
Then (A×B) ∪ (C ×D) 6= (A ∪ C)× (B ∪D).



3. (10 points) Draw diagrams for all the different relations on A = {a, b, c} that are both reflexive and symmetric,
but not transitive.

a

b c

a

b c

a

b c

Editorial Comment: In grading the tests, I noticed that there was a tendency to include R = {(a, a), (b, b), (c, c)}.
This relation is actually transitive, for it is impossible for (xRy) ∧ (yRz) =⇒ xRz to ever be false.

4. (14 points) Prove that 31 + 32 + 33 + · · ·+ 3n =
3n+1 − 3

2
for every n ∈ N.

Proof (Induction) If n = 1, then this statement is simply 31 = 32−3
2 = 6

2 = 3, which is true.

Now we will show that if the statement is true for some n = k ≥ 1, then it is true for n = k + 1. In other
words, we will prove that if 31 + 32 + 33 + · · ·+ 3k = 3k+1−3

2 , then 31 + 32 + 33 + · · ·+ 3k + 3k+1 = 3(k+1)+1−3
2 .

We use direct proof. Assume 31 + 32 + 33 + · · ·+ 3k = 3k+1−3
2 . Observe that

31 + 32 + 33 + · · ·+ 3k + 3k+1 = (31 + 32 + 33 + · · ·+ 3k) + 3k+1

=
3k+1 − 3

2
+ 3k+1

=
3k+1 − 3

2
+

2 · 3k+1

2

=
3k+1 − 3 + 2 · 3k+1

2

=
3 · 3k+1 − 3

2

=
31 · 3k+1 − 3

2

=
3(k+1)+1 − 3

2

We have now established that 31 + 32 + 33 + · · · + 3k + 3k+1 = 3(k+1)+1−3
2 . Thus we have shown that if the

statement is true for n = k, then it is true for n = k + 1. This completes the proof by induction.



5. (14 points) Recall that the Fibonacci Sequence is defined as F1 = 1, F2 = 1 and Fn = Fn−1 +Fn−2 for n ≥ 3.

Use induction to prove that
n∑

i=1

F 2
i = FnFn+1 for every n ∈ N.

Proof (Induction)

If n = 1, then this statement is simply
1∑

i=1

F 2
i = F1F1+1, that is, F 2

1 = F1F2, which is just the (true)

statement 12 = 1 · 1.

Now we will show that if the statement is true for some n = k ≥ 1, then it is true for n = k + 1. In other

words, we will prove that if
k∑

i=1

F 2
i = FkFk+1, then

k+1∑
i=1

F 2
i = Fk+1F(k+1)+1. We use direct proof. Assume

k∑
i=1

F 2
i = FkFk+1. Then

k+1∑
i=1

F 2
i =

(
k∑

i=1

F 2
i

)
+ F 2

k+1

= FkFk+1 + F 2
k+1

= Fk+1 (Fk + Fk+1)
= Fk+1 (Fk+2) (As Fk + Fk+1 = Fk+2 by definition of the Fibonacci sequence.)
= Fk+1F(k+1)+1

We have now established that
k+1∑
i=1

F 2
i = Fk+1F(k+1)+1. Thus we have shown that if the statement is true for

n = k, then it is true for n = k + 1. This completes the proof by induction.



6. (14 points) Prove or disprove:
If A and B are sets, then P(A)−P(B) ⊆P(A−B).

This is false.
Disproof: Here is a counterexample:
Let A = {1, 2} and B = {1}.
Then P(A)−P(B) = {∅, {1} , {2} , {1, 2}} − {∅, {1}} = {{2} , {1, 2}}.
Also P(A−B) = P({2}) = {∅, {2}}.
In this example we have P(A)−P(B) 6⊆P(A−B).

7. (14 points) Prove or disprove:
Suppose R and S are equivalence relations on a set A. Then R ∪ S is also an equivalence relation on A.

This is false.
For a counterexample, let R and S be the equivalence relations on A = {a, b, c} diagramed below.

a

b c

a

b c

R = {(a, a), (b, b), (c, c), (a, b), (b, a)} R = {(a, a), (b, b), (c, c), (a, c), (c, a)}

Both R and S are equivalence relations, because they are reflexive, symmetric and transitive. Their union
is the relation T = R∪S = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)}, which is diagramed below. It is not
transitive because (bTa) ∧ (aTc) =⇒ (bTc) is false. Therefore the union is not an equivalence relation.

a

b c


