\qquad R. Hammack

Score:

1. (14 points) Suppose A, B and C are sets, and $C \neq \emptyset$. Prove that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$.

Proof. First we will prove that if $A \times C \subseteq B \times C$, then $A \subseteq B$.
We use direct proof. Suppose $A \times C \subseteq B \times C$.
To show $A \subseteq B$, suppose $a \in A$. Since $C \neq \emptyset$, there is an element $c \in C$
Therefore (a, c) $\in A \times C$ by definition of the Cartesian product.
As $A \times C \subseteq B \times C$, it follows that $(a, c) \in B \times C$.
From this, we get $a \in B$ by definition of the Cartesian product.
We've now shown $a \in A$ implies $a \in B$, so $A \subseteq B$.
This completes the proof that if $A \times C \subseteq B \times C$, then $A \subseteq B$.

Conversely, we need to prove that $A \subseteq B$ implies $A \times C \subseteq B \times C$.
We use direct proof. Suppose $A \subseteq C$.
We need to show $A \times C \subseteq B \times C$.
Thus assume $(a, b) \in A \times C$.
Then $a \in A$ and $b \in C$ by definition of the Cartesian product.
Because $A \subseteq B$, it follows from $a \in A$ that also $a \in B$.
Now we have $a \in B$ and $c \in C$, so $(a, c) \in B \times C$.
From this it follows that $A \times C \subseteq B \times C$.

This completes the proof that if $A \subseteq B$, then $A \times C \subseteq B \times C$.
2. Suppose A, B, C and D are sets.
(a) (10 points) Prove that $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.

Proof. Suppose $(a, b) \in(A \times B) \cup(C \times D)$.
By definition of union, this means $(a, b) \in(A \times B)$ or $(a, b) \in(C \times D)$.
We examine these two cases individually.
Case 1. Suppose $(a, b) \in(A \times B)$. By definition of \times, it follows that $a \in A$ and $b \in B$. From this, it follows from the definition of \cup that $a \in A \cup C$ and $b \in B \cup D$.
Again from the definition of \times, we get $(a, b) \in(A \cup C) \times(B \cup D)$.
Case 2. Suppose $(a, b) \in(C \times D)$. By definition of \times, it follows that $a \in C$ and $b \in D$.
From this, it follows from the definition of \cup that $a \in A \cup C$ and $b \in B \cup D$.
Again from the definition of \times, we get $(a, b) \in(A \cup C) \times(B \cup D)$.
In either case, we obtained $(a, b) \in(A \cup C) \times(B \cup D)$,
so we've proved that $(a, b) \in(A \times B) \cup(C \times D)$ implies $(a, b) \in(A \cup C) \times(B \cup D)$.
Therefore $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
(b) (10 points) Give a counterexample showing $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$ is not always true.

Let $A=\{a\}, B=\{b\}, C=\{c\}$, and $D=\{d\}$.
Then $(A \times B) \cup(C \times D)=\{(a, b)\} \cup\{(c, d)\}=\{(a, b),(c, d)\}$.
Also, $(A \cup C) \times(B \cup D)=\{a, c\} \times\{b, d\}=\{(a, b),(a, d),(c, b),(c, d)\}$.
Then $(A \times B) \cup(C \times D) \neq(A \cup C) \times(B \cup D)$.
3. (10 points) Draw diagrams for all the different relations on $A=\{a, b, c\}$ that are both reflexive and symmetric, but not transitive.

Editorial Comment: In grading the tests, I noticed that there was a tendency to include $R=\{(a, a),(b, b),(c, c)\}$. This relation is actually transitive, for it is impossible for $(x R y) \wedge(y R z) \Longrightarrow x R z$ to ever be false.
4. (14 points) Prove that $3^{1}+3^{2}+3^{3}+\cdots+3^{n}=\frac{3^{n+1}-3}{2}$ for every $n \in \mathbb{N}$.

Proof (Induction) If $n=1$, then this statement is simply $3^{1}=\frac{3^{2}-3}{2}=\frac{6}{2}=3$, which is true.
Now we will show that if the statement is true for some $n=k \geq 1$, then it is true for $n=k+1$. In other words, we will prove that if $3^{1}+3^{2}+3^{3}+\cdots+3^{k}=\frac{3^{k+1}-3}{2}$, then $3^{1}+3^{2}+3^{3}+\cdots+3^{k}+3^{k+1}=\frac{3^{(k+1)+1}-3}{2}$. We use direct proof. Assume $3^{1}+3^{2}+3^{3}+\cdots+3^{k}=\frac{3^{k+1}-3}{2}$. Observe that

$$
\begin{aligned}
3^{1}+3^{2}+3^{3}+\cdots+3^{k}+3^{k+1} & =\left(3^{1}+3^{2}+3^{3}+\cdots+3^{k}\right)+3^{k+1} \\
& =\frac{3^{k+1}-3}{2}+3^{k+1} \\
& =\frac{3^{k+1}-3}{2}+\frac{2 \cdot 3^{k+1}}{2} \\
& =\frac{3^{k+1}-3+2 \cdot 3^{k+1}}{2} \\
& =\frac{3 \cdot 3^{k+1}-3}{2} \\
& =\frac{3^{1} \cdot 3^{k+1}-3}{2} \\
& =\frac{3^{(k+1)+1}-3}{2}
\end{aligned}
$$

We have now established that $3^{1}+3^{2}+3^{3}+\cdots+3^{k}+3^{k+1}=\frac{3^{(k+1)+1}-3}{2}$. Thus we have shown that if the statement is true for $n=k$, then it is true for $n=k+1$. This completes the proof by induction.
5. (14 points) Recall that the Fibonacci Sequence is defined as $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Use induction to prove that $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$ for every $n \in \mathbb{N}$.

Proof (Induction)
If $n=1$, then this statement is simply $\sum_{i=1}^{1} F_{i}^{2}=F_{1} F_{1+1}$, that is, $F_{1}^{2}=F_{1} F_{2}$, which is just the (true) statement $1^{2}=1 \cdot 1$.

Now we will show that if the statement is true for some $n=k \geq 1$, then it is true for $n=k+1$. In other words, we will prove that if $\sum_{i=1}^{k} F_{i}^{2}=F_{k} F_{k+1}$, then $\sum_{i=1}^{k+1} F_{i}^{2}=F_{k+1} F_{(k+1)+1}$. We use direct proof. Assume $\sum_{i=1}^{k} F_{i}^{2}=F_{k} F_{k+1}$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} F_{i}^{2} & =\left(\sum_{i=1}^{k} F_{i}^{2}\right)+F_{k+1}^{2} \\
& =F_{k} F_{k+1}+F_{k+1}^{2} \\
& =F_{k+1}\left(F_{k}+F_{k+1}\right) \\
& =F_{k+1}\left(F_{k+2}\right) \quad \text { (As } F_{k}+F_{k+1}=F_{k+2} \text { by definition of the Fibonacci sequence.) } \\
& =F_{k+1} F_{(k+1)+1}
\end{aligned}
$$

We have now established that $\sum_{i=1}^{k+1} F_{i}^{2}=F_{k+1} F_{(k+1)+1}$. Thus we have shown that if the statement is true for $n=k$, then it is true for $n=k+1$. This completes the proof by induction.
6. (14 points) Prove or disprove:

If A and B are sets, then $\mathscr{P}(A)-\mathscr{P}(B) \subseteq \mathscr{P}(A-B)$.
This is false.
Disproof: Here is a counterexample:
Let $A=\{1,2\}$ and $B=\{1\}$.
Then $\mathscr{P}(A)-\mathscr{P}(B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}-\{\emptyset,\{1\}\}=\{\{2\},\{1,2\}\}$.
Also $\mathscr{P}(A-B)=\mathscr{P}(\{2\})=\{\emptyset,\{2\}\}$.
In this example we have $\mathscr{P}(A)-\mathscr{P}(B) \nsubseteq \mathscr{P}(A-B)$.
7. (14 points) Prove or disprove:

Suppose R and S are equivalence relations on a set A. Then $R \cup S$ is also an equivalence relation on A.

This is false.
For a counterexample, let R and S be the equivalence relations on $A=\{a, b, c\}$ diagramed below.

$$
R=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}
$$

$$
R=\{(a, a),(b, b),(c, c),(a, c),(c, a)\}
$$

Both R and S are equivalence relations, because they are reflexive, symmetric and transitive. Their union is the relation $T=R \cup S=\{(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(c, a)\}$, which is diagramed below. It is not transitive because $(b T a) \wedge(a T c) \Longrightarrow(b T c)$ is false. Therefore the union is not an equivalence relation.

