Introduction to Mathematical Reason	MATH 300 Test #2	April 10, 2012
Name:	R. Hammack	Score:

1. (14 points) Suppose A, B and C are sets, and $C \neq \emptyset$. Prove that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$.

Proof. First we will prove that if $A \times C \subseteq B \times C$, then $A \subseteq B$. We use direct proof. Suppose $A \times C \subseteq B \times C$.

To show $A \subseteq B$, suppose $a \in A$. Since $C \neq \emptyset$, there is an element $c \in C$ Therefore $(a, c) \in A \times C$ by definition of the Cartesian product. As $A \times C \subseteq B \times C$, it follows that $(a, c) \in B \times C$. From this, we get $a \in B$ by definition of the Cartesian product. We've now shown $a \in A$ implies $a \in B$, so $A \subseteq B$.

This completes the proof that if $A \times C \subseteq B \times C$, then $A \subseteq B$.

Conversely, we need to prove that $A \subseteq B$ implies $A \times C \subseteq B \times C$.

We use direct proof. Suppose $A \subseteq C$.

We need to show $A \times C \subseteq B \times C$. Thus assume $(a, b) \in A \times C$. Then $a \in A$ and $b \in C$ by definition of the Cartesian product. Because $A \subseteq B$, it follows from $a \in A$ that also $a \in B$. Now we have $a \in B$ and $c \in C$, so $(a, c) \in B \times C$. From this it follows that $A \times C \subseteq B \times C$.

This completes the proof that if $A \subseteq B$, then $A \times C \subseteq B \times C$.

- 2. Suppose A, B, C and D are sets.
 - (a) (10 points) Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Proof. Suppose $(a, b) \in (A \times B) \cup (C \times D)$. By definition of union, this means $(a, b) \in (A \times B)$ or $(a, b) \in (C \times D)$. We examine these two cases individually.

Case 1. Suppose $(a, b) \in (A \times B)$. By definition of \times , it follows that $a \in A$ and $b \in B$. From this, it follows from the definition of \cup that $a \in A \cup C$ and $b \in B \cup D$. Again from the definition of \times , we get $(a, b) \in (A \cup C) \times (B \cup D)$.

Case 2. Suppose $(a, b) \in (C \times D)$. By definition of \times , it follows that $a \in C$ and $b \in D$. From this, it follows from the definition of \cup that $a \in A \cup C$ and $b \in B \cup D$. Again from the definition of \times , we get $(a, b) \in (A \cup C) \times (B \cup D)$.

In either case, we obtained $(a, b) \in (A \cup C) \times (B \cup D)$, so we've proved that $(a, b) \in (A \times B) \cup (C \times D)$ implies $(a, b) \in (A \cup C) \times (B \cup D)$.

Therefore $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

(b) (10 points) Give a counterexample showing $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ is not always true.

Let $A = \{a\}, B = \{b\}, C = \{c\}, \text{ and } D = \{d\}.$ Then $(A \times B) \cup (C \times D) = \{(a, b)\} \cup \{(c, d)\} = \{(a, b), (c, d)\}.$ Also, $(A \cup C) \times (B \cup D) = \{a, c\} \times \{b, d\} = \{(a, b), (a, d), (c, b), (c, d)\}.$ Then $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D).$ 3. (10 points) Draw diagrams for all the different relations on $A = \{a, b, c\}$ that are both reflexive and symmetric, but **not** transitive.

Editorial Comment: In grading the tests, I noticed that there was a tendency to include $R = \{(a, a), (b, b), (c, c)\}$. This relation is actually transitive, for it is impossible for $(xRy) \land (yRz) \Longrightarrow xRz$ to ever be false.

4. (14 points) Prove that $3^1 + 3^2 + 3^3 + \dots + 3^n = \frac{3^{n+1} - 3}{2}$ for every $n \in \mathbb{N}$. **Proof** (Induction) If n = 1, then this statement is simply $3^1 = \frac{3^2 - 3}{2} = \frac{6}{2} = 3$, which is true.

Now we will show that if the statement is true for some $n = k \ge 1$, then it is true for n = k + 1. In other words, we will prove that if $3^1 + 3^2 + 3^3 + \dots + 3^k = \frac{3^{k+1}-3}{2}$, then $3^1 + 3^2 + 3^3 + \dots + 3^k + 3^{k+1} = \frac{3^{(k+1)+1}-3}{2}$. We use direct proof. Assume $3^1 + 3^2 + 3^3 + \dots + 3^k = \frac{3^{k+1}-3}{2}$. Observe that

$$\begin{aligned} 3^{1} + 3^{2} + 3^{3} + \dots + 3^{k} + 3^{k+1} &= (3^{1} + 3^{2} + 3^{3} + \dots + 3^{k}) + 3^{k+1} \\ &= \frac{3^{k+1} - 3}{2} + 3^{k+1} \\ &= \frac{3^{k+1} - 3}{2} + \frac{2 \cdot 3^{k+1}}{2} \\ &= \frac{3^{k+1} - 3 + 2 \cdot 3^{k+1}}{2} \\ &= \frac{3 \cdot 3^{k+1} - 3}{2} \\ &= \frac{3^{1} \cdot 3^{k+1} - 3}{2} \\ &= \frac{3^{(k+1)+1} - 3}{2} \end{aligned}$$

We have now established that $3^1 + 3^2 + 3^3 + \cdots + 3^k + 3^{k+1} = \frac{3^{(k+1)+1}-3}{2}$. Thus we have shown that if the statement is true for n = k, then it is true for n = k + 1. This completes the proof by induction.

5. (14 points) Recall that the Fibonacci Sequence is defined as $F_1 = 1$, $F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Use induction to prove that $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ for every $n \in \mathbb{N}$.

Proof (Induction)

If n = 1, then this statement is simply $\sum_{i=1}^{1} F_i^2 = F_1 F_{1+1}$, that is, $F_1^2 = F_1 F_2$, which is just the (true) statement $1^2 = 1 \cdot 1$.

Now we will show that if the statement is true for some $n = k \ge 1$, then it is true for n = k + 1. In other words, we will prove that if $\sum_{i=1}^{k} F_i^2 = F_k F_{k+1}$, then $\sum_{i=1}^{k+1} F_i^2 = F_{k+1} F_{(k+1)+1}$. We use direct proof. Assume $\sum_{i=1}^{k} F_i^2 = F_k F_{k+1}$. Then

$$\begin{split} \sum_{i=1}^{k+1} F_i^2 &= \left(\sum_{i=1}^k F_i^2\right) + F_{k+1}^2 \\ &= F_k F_{k+1} + F_{k+1}^2 \\ &= F_{k+1} \left(F_k + F_{k+1}\right) \\ &= F_{k+1} \left(F_{k+2}\right) \qquad (\text{As } F_k + F_{k+1} = F_{k+2} \text{ by definition of the Fibonacci sequence.}) \\ &= F_{k+1} F_{(k+1)+1} \end{split}$$

We have now established that $\sum_{i=1}^{k+1} F_i^2 = F_{k+1}F_{(k+1)+1}$. Thus we have shown that if the statement is true for n = k, then it is true for n = k+1. This completes the proof by induction.

6. (14 points) Prove or disprove: If A and B are sets, then $\mathscr{P}(A) - \mathscr{P}(B) \subseteq \mathscr{P}(A - B)$.

This is **false. Disproof:** Here is a counterexample: Let $A = \{1, 2\}$ and $B = \{1\}$. Then $\mathscr{P}(A) - \mathscr{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} - \{\emptyset, \{1\}\} = \{\{2\}, \{1, 2\}\}.$ Also $\mathscr{P}(A - B) = \mathscr{P}(\{2\}) = \{\emptyset, \{2\}\}.$ In this example we have $\mathscr{P}(A) - \mathscr{P}(B) \not\subseteq \mathscr{P}(A - B).$

7. (14 points) Prove or disprove:

Suppose R and S are equivalence relations on a set A. Then $R \cup S$ is also an equivalence relation on A.

This is **false**.

For a counterexample, let R and S be the equivalence relations on $A = \{a, b, c\}$ diagramed below.

$$R = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$$
$$R = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}$$

Both R and S are equivalence relations, because they are reflexive, symmetric and transitive. Their union is the relation $T = R \cup S = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)\}$, which is diagramed below. It is not transitive because $(bTa) \land (aTc) \Longrightarrow (bTc)$ is false. Therefore the union is not an equivalence relation.

