Introduction to
MATH 300
April 10, 2012
Mathematical Reason
Test \#2

Name:
R. Hammack

Score:

1. (14 points) Suppose $A, B$ and $C$ are sets, and $C \neq \emptyset$. Prove that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$.
2. Suppose $A, B, C$ and $D$ are sets.
(a) (10 points) Prove that $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
(b) (10 points) Give a counterexample showing that it is not always true that $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$.
3. (10 points) Draw diagrams for all the different relations on $A=\{a, b, c\}$ that are both reflexive and symmetric, but not transitive.
4. (14 points) Prove that $3^{1}+3^{2}+3^{3}+\cdots+3^{n}=\frac{3^{n+1}-3}{2}$ for every $n \in \mathbb{N}$.
5. (14 points) Recall that the Fibonacci Sequence is defined as $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Use induction to prove that $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$ for every $n \in \mathbb{N}$.
6. (14 points) Prove or disprove:

If $A$ and $B$ are sets, then $\mathscr{P}(A)-\mathscr{P}(B) \subseteq \mathscr{P}(A-B)$.
7. (14 points) Prove or disprove:

Suppose $R$ and $S$ are equivalence relations on a set $A$. Then $R \cup S$ is also an equivalence relation on $A$.

