Introduction to Mathematical Reason	$\begin{array}{c} \text{MATH 300} \\ \text{Test } \#2 \end{array}$	April 12, 2011
Name:	R. Hammack	Score:
1. (14 points) Prove that $x \in \{12\}$	$a + 45b : a, b \in \mathbb{Z}$ if and only if $3 \mid x$.	

Proof. (\Leftarrow) First we show (with direct proof) that if $x \in \{12a + 45b : a, b \in \mathbb{Z}\}$, then $3 \mid x$. Suppose $x \in \{12a + 45b : a, b \in \mathbb{Z}\}$. This means x = 12a + 45b for some integers a and b. As x = 12a + 45b = 3(4a + 15b), where $4a + 15b \in \mathbb{Z}$, we see that $3 \mid x$.

(\Longrightarrow) Conversely, we now show (with direct proof) that if $3 \mid x$, then $x \in \{12a + 45b : a, b \in \mathbb{Z}\}$. Suppose $3 \mid x$. This means x = 3k for some integer k. Observe now that $x = 3k = 48k - 45k = \boxed{12 \cdot (4k) + 45 \cdot (-k)}$. Letting a and b be the integers a = 4k and b = -k, the above gives x = 12a + 45b. Therefore $x \in \{12a + 45b : a, b \in \mathbb{Z}\}$.

2. (14 points) Suppose A, B, C and D are sets. Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Proof. Suppose $(x, y) \in (A \times B) \cup (C \times D)$. (We want to show that this implies $(x, y) \in (A \cup C) \times (B \cup D)$.) By definition of union, $(x, y) \in (A \times B)$ or $(x, y) \in (C \times D)$. We consider these cases separately.

CASE I: Suppose $(x, y) \in (A \times B)$.

By definition of the Cartesian product, we have $x \in A$ and $y \in B$. By definition of union, it follows that $x \in A \cup C$ and $y \in B \cup D$. Again, by definition of the Cartesian product, we get $(x, y) \in (A \cup C) \times (B \cup D)$.

Thus in this case we have $(x, y) \in (A \times B) \cup (C \times D)$ implies $(x, y) \in (A \cup C) \times (B \cup D)$.

CASE II: Suppose $(x, y) \in (C \times D)$. By definition of the Cartesian product, we have $x \in C$ and $y \in D$. By definition of union, it follows that $x \in A \cup C$ and $y \in B \cup D$. Again, by definition of the Cartesian product, we get $(x, y) \in (A \cup C) \times (B \cup D)$.

Thus in this case we have $(x, y) \in (A \times B) \cup (C \times D)$ implies $(x, y) \in (A \cup C) \times (B \cup D)$.

The above has shown $(x, y) \in (A \times B) \cup (C \times D)$ implies $(x, y) \in (A \cup C) \times (B \cup D)$, and therefore $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. 3. (14 points) Prove that $\{3a + 5b : a, b \in \mathbb{Z}\} = \mathbb{Z}$.

Proof. First we will show that $\{3a + 5b : a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$. Suppose $x \in \{3a + 5b : a, b \in \mathbb{Z}\}$. This means that x = 3a + 5b for some integers a and b. Then x = 3a + 5b is an integer, so $x \in \mathbb{Z}$. This reasoning establishes that $\{3a + 5b : a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$.

Next we will show that $\mathbb{Z} \subseteq \{3a + 5b : a, b \in \mathbb{Z}\}$. Suppose $x \in \mathbb{Z}$. Then $x = 3 \cdot (-3x) + 5 \cdot 2x$. Thus x = 3a + 5b, where $a = -3x \in \mathbb{Z}$ and $b = 2x \in \mathbb{Z}$. Consequently $x \in \{3a + 5b : a, b \in \mathbb{Z}\}$. The above has established that $\mathbb{Z} \subseteq \{3a + 5b : a, b \in \mathbb{Z}\}$.

As $\{3a+5b: a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$ and $\mathbb{Z} \subseteq \{3a+5b: a, b \in \mathbb{Z}\}$, it follows that $\{3a+5b: a, b \in \mathbb{Z}\} = \mathbb{Z}$

4. (15 points) Recall that Fiboacci Sequence is defined as $F_1 = 1$, $F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$. Use induction to prove that $F_1^2 + F_2^2 + F_3^2 + F_4^2 + \cdots + F_n^2 = F_n F_{n+1}$.

Proof. (Induction)

First, for the basis step, note that if n = 1, then the equation states that $F_1^2 = F_1F_2$, and this reduces to the (true) statement $1^2 = 1 \cdot 1$. Thus the equation is true when n = 1.

(Although it is not necessary, we can also verify the statement for n = 2. It is $F_1^2 + F_2^2 = F_2F_3$, and this reduces to the [true] statement $1^2 + 1^2 = 1 \cdot 2$. Thus the equation is true when n = 1.)

Next assume that for some $k \ge 1$ we have $F_1^2 + F_2^2 + F_3^2 + F_4^2 + \cdots + F_n^2 = F_k F_{k+1}$, that is, assume that the given equation is true for n = k. In what follows we show that this assumption implies that the equation is true for n = k + 1. Observe that

$$F_1^2 + F_2^2 + F_3^2 + F_4^2 + \dots + F_k^2 + F_{k+1}^2 = (F_1^2 + F_2^2 + F_3^2 + F_4^2 + \dots + F_k^2) + F_{k+1}^2 = F_k F_{k+1} + F_{k+1}^2 = F_{k+1}(F_k + F_{k+1}) = F_{k+1}F_{k+2}.$$

(The last step used the Fibonacci property $F_k + F_{k+1} = F_{k+2}$.) The above has established that

$$F_1^2 + F_2^2 + F_3^2 + F_4^2 + \dots + F_k^2 + F_{k+1}^2 = F_{k+1}F_{k+2},$$

which means that the given equation is true for n = k + 1.

This completes the proof by induction.

5. (14 points) Use induction to prove that $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Proof. (Induction)

First, for the basis step, note that if n = 1, then the equation states that $\frac{1}{2!} = 1 - \frac{1}{(1+1)!}$, and this reduces to the (true) statement $\frac{1}{2} = \frac{1}{2}$. Thus the equation is true when n = 1.

Next assume that for some $k \ge 1$ we have $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$. (That is, assume the equation is true for n = k.) In what follows we show that the equation is true for n = k + 1. Observe that

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{((k+1)+1)!} = \left(\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!}\right) + \frac{k+1}{(k+2)!} = \left(1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}\right) = \left(1 - \frac{k+2}{k+2} + \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}\right) = \left(1 - \frac{k+2}{(k+2)!} + \frac{k+1}{(k+2)!}\right) = \left(1 - \frac{k+2}{(k+2)!} + \frac{k+1}{(k+2)!}\right) = \left(1 + \frac{-(k+2) + (k+1)}{(k+2)!}\right) = \left(1 + \frac{-(k+2) + (k+1)}{(k+2)!}\right) = \left(1 + \frac{-1}{(k+2)!}\right) = \left(1 - \frac{1}{((k+1)+1)!}\right) = \left(1 - \frac{1}{(k+1)!}\right) = \left$$

The above has established that

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{((k+1)+1)!} = 1 - \frac{1}{((k+1)+1)!},$$

which means that the given equation is true for n = k + 1.

This completes the proof by induction.

6. (14 points) Prove or disprove: If A and B are sets, then $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$.

This is **False**. Here is a counterexample:

Let $A = \{1\}$ and $B = \{2\}$, so that we have

$$\mathscr{P}(A) \cup \mathscr{P}(B) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}\} = [\{\emptyset, \{1\}, \{2\}\}].$$
(1)

Now observe that

$$\mathscr{P}(A \cup B) = \mathscr{P}(\{1, 2\}) = [\{\emptyset, \{1\}, \{2\}, \{1, 2\}\}].$$
(2)

Equations (1) and (2) above establish that it is possible that $\mathscr{P}(A \cup B) \neq \mathscr{P}(A) \cup \mathscr{P}(B)$.

7. (15 points) Prove or disprove:

If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

This is **TRUE**. A proof follows.

Proof. Suppose R and S are two equivalence relations on a set A. Then since $R \subseteq A \times A$ and $S \subseteq A \times A$, it follows that $R \cap S \subseteq A \times A$, so $R \cap S$ is a relation on A. We need to check that it is an equivalence relation. For simplicity, set $U = R \cap S$, so we need to check that U is an equivalence relation.

First we show U is reflexive: Suppose $x \in A$. Since R and S are both reflexive relations on A (because they are equivalence relations), it follows that $(x, x) \in R$ and $(x, x) \in S$. Therefore $(x, x) \in R \cap S = U$. This shows $(x, x) \in U$, and hence xUx for every element of A, so U is reflexive.

Next we show U is symmetric: Suppose $x, y \in A$, and xUy. We need to show that this implies yUx. Note that xUy means $(x, y) \in U = R \cap S$. Thus $(x, y) \in R$ and $(x, y) \in S$. Since R and S are both equivalence relations (and hence both symmetric), it follows that $(y, x) \in R$ and $(y, x) \in S$. Therefore $(y, x) \in R \cap S = U$, meaning yUx. We've now proved that xUy implies yUx for any $x, y \in A$, so U is symmetric.

Next we show U is transitive: Suppose $x, y, z \in A$, and xUy and yUz. We need to show that this implies xUz. Observe that xUy and yUz give us

$$(x, y) \in U = R \cap S,$$

 $(y, z) \in U = R \cap S.$

It follows $(x, y) \in R$ and $(y, z) \in R$, and since R is transitive we also have $(x, z) \in R$.

Also $(x, y) \in S$ and $(y, z) \in S$, and since S is transitive we also have $(x, z) \in S$.

Therefore (x, z) is an element of both R and S, so $(x, z) \in R \cap S = U$. This means xUz. We've now seen that if xUy and yUz, then xUz. Therefore U is transitive.

At this point we've shown that the relation $U = R \cap S$ is reflexive, symmetric and transitive, so it is an equivalence relation.