Introduction to
Mathematical Reason

Name: \qquad R. Hammack

Score:

1. (14 points) Prove that $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$ if and only if $3 \mid x$.

Proof. (\Longleftarrow) First we show (with direct proof) that if $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$, then $3 \mid x$. Suppose $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$. This means $x=12 a+45 b$ for some integers a and b. As $x=12 a+45 b=3(4 a+15 b)$, where $4 a+15 b \in \mathbb{Z}$, we see that $3 \mid x$.
(\Longrightarrow) Conversely, we now show (with direct proof) that if $3 \mid x$, then $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$.
Suppose $3 \mid x$. This means $x=3 k$ for some integer k.
Observe now that $x=3 k=48 k-45 k=12 \cdot(4 k)+45 \cdot(-k)$.
Letting a and b be the integers $a=4 k$ and $b=-k$, the above gives $x=12 a+45 b$.
Therefore $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$.
2. (14 points) Suppose A, B, C and D are sets. Prove that $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.

Proof. Suppose $(x, y) \in(A \times B) \cup(C \times D)$. (We want to show that this implies $(x, y) \in(A \cup C) \times(B \cup D)$.) By definition of union, $(x, y) \in(A \times B)$ or $(x, y) \in(C \times D)$.
We consider these cases separately.

CASE I: Suppose $(x, y) \in(A \times B)$.
By definition of the Cartesian product, we have $x \in A$ and $y \in B$.
By definition of union, it follows that $x \in A \cup C$ and $y \in B \cup D$.
Again, by definition of the Cartesian product, we get $(x, y) \in(A \cup C) \times(B \cup D)$.
Thus in this case we have $(x, y) \in(A \times B) \cup(C \times D)$ implies $(x, y) \in(A \cup C) \times(B \cup D)$.

CASE II: Suppose $(x, y) \in(C \times D)$.
By definition of the Cartesian product, we have $x \in C$ and $y \in D$.
By definition of union, it follows that $x \in A \cup C$ and $y \in B \cup D$.
Again, by definition of the Cartesian product, we get $(x, y) \in(A \cup C) \times(B \cup D)$.
Thus in this case we have $(x, y) \in(A \times B) \cup(C \times D)$ implies $(x, y) \in(A \cup C) \times(B \cup D)$.

The above has shown $(x, y) \in(A \times B) \cup(C \times D)$ implies $(x, y) \in(A \cup C) \times(B \cup D)$, and therefore $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
3. (14 points) Prove that $\{3 a+5 b: a, b \in \mathbb{Z}\}=\mathbb{Z}$.

Proof. First we will show that $\{3 a+5 b: a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
Suppose $x \in\{3 a+5 b: a, b \in \mathbb{Z}\}$. This means that $x=3 a+5 b$ for some integers a and b.
Then $x=3 a+5 b$ is an integer, so $x \in \mathbb{Z}$.
This reasoning establishes that $\{3 a+5 b: a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
Next we will show that $\mathbb{Z} \subseteq\{3 a+5 b: a, b \in \mathbb{Z}\}$.
Suppose $x \in \mathbb{Z}$. Then $x=3 \cdot(-3 x)+5 \cdot 2 x$.
Thus $x=3 a+5 b$, where $a=-3 x \in \mathbb{Z}$ and $b=2 x \in \mathbb{Z}$. Consequently $x \in\{3 a+5 b: a, b \in \mathbb{Z}\}$.
The above has established that $\mathbb{Z} \subseteq\{3 a+5 b: a, b \in \mathbb{Z}\}$.
As $\{3 a+5 b: a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$ and $\mathbb{Z} \subseteq\{3 a+5 b: a, b \in \mathbb{Z}\}$, it follows that $\{3 a+5 b: a, b \in \mathbb{Z}\}=\mathbb{Z}$
4. (15 points) Recall that Fiboacci Sequence is defined as $F_{1}=1, F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$.

Use induction to prove that $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
Proof. (Induction)
First, for the basis step, note that if $n=1$, then the equation states that $F_{1}^{2}=F_{1} F_{2}$, and this reduces to the (true) statement $1^{2}=1 \cdot 1$. Thus the equation is true when $n=1$.
(Although it is not necessary, we can also verify the statement for $n=2$. It is $F_{1}^{2}+F_{2}^{2}=F_{2} F_{3}$, and this reduces to the [true] statement $1^{2}+1^{2}=1 \cdot 2$. Thus the equation is true when $n=1$.)

Next assume that for some $k \geq 1$ we have $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{n}^{2}=F_{k} F_{k+1}$, that is, assume that the given equation is true for $n=k$. In what follows we show that this assumption implies that the equation is true for $n=k+1$. Observe that

$$
\begin{aligned}
F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{k}^{2}+F_{k+1}^{2} & = \\
\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{k}^{2}\right)+F_{k+1}^{2} & = \\
F_{k} F_{k+1}+F_{k+1}^{2} & = \\
F_{k+1}\left(F_{k}+F_{k+1}\right) & =F_{k+1} F_{k+2} .
\end{aligned}
$$

(The last step used the Fibonacci property $F_{k}+F_{k+1}=F_{k+2}$.) The above has established that

$$
F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{k}^{2}+F_{k+1}^{2}=F_{k+1} F_{k+2},
$$

which means that the given equation is true for $n=k+1$.

This completes the proof by induction.
5. (14 points) Use induction to prove that $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$.

Proof. (Induction)
First, for the basis step, note that if $n=1$, then the equation states that $\frac{1}{2!}=1-\frac{1}{(1+1)!}$, and this reduces to the (true) statement $\frac{1}{2}=\frac{1}{2}$. Thus the equation is true when $n=1$.

Next assume that for some $k \geq 1$ we have $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}=1-\frac{1}{(k+1)!}$. (That is, assume the equation is true for $n=k$.) In what follows we show that the equation is true for $n=k+1$. Observe that

$$
\begin{aligned}
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{((k+1)+1)!} & = \\
\left(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}\right)+\frac{k+1}{(k+2)!} & = \\
1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!} & = \\
1-\frac{k+2}{k+2} \frac{1}{(k+1)!}+\frac{k+1}{(k+2)!} & = \\
1-\frac{k+2}{(k+2)!}+\frac{k+1}{(k+2)!} & = \\
1+\frac{-(k+2)+(k+1)}{(k+2)!} & = \\
1+\frac{-1}{(k+2)!} & = \\
1-\frac{1}{(k+2)!} & =1-\frac{1}{((k+1)+1)!}
\end{aligned}
$$

The above has established that

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{((k+1)+1)!}=1-\frac{1}{((k+1)+1)!},
$$

which means that the given equation is true for $n=k+1$.
This completes the proof by induction.
6. (14 points) Prove or disprove:

If A and B are sets, then $\mathscr{P}(A \cup B)=\mathscr{P}(A) \cup \mathscr{P}(B)$.

This is False. Here is a counterexample:

Let $A=\{1\}$ and $B=\{2\}$, so that we have

$$
\begin{equation*}
\mathscr{P}(A) \cup \mathscr{P}(B)=\{\emptyset,\{1\}\} \cup\{\emptyset,\{2\}\}=\{\emptyset,\{1\},\{2\}\} . \tag{1}
\end{equation*}
$$

Now observe that

$$
\begin{equation*}
\mathscr{P}(A \cup B)=\mathscr{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} . \tag{2}
\end{equation*}
$$

Equations (1) and (2) above establish that it is possible that $\mathscr{P}(A \cup B) \neq \mathscr{P}(A) \cup \mathscr{P}(B)$.
7. (15 points) Prove or disprove:

If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

This is TRUE. A proof follows.

Proof. Suppose R and S are two equivalence relations on a set A. Then since $R \subseteq A \times A$ and $S \subseteq A \times A$, it follows that $R \cap S \subseteq A \times A$, so $R \cap S$ is a relation on A. We need to check that it is an equivalence relation. For simplicity, set $U=R \cap S$, so we need to check that U is an equivalence relation.

First we show U is reflexive: Suppose $x \in A$. Since R and S are both reflexive relations on A (because they are equivalence relations), it follows that $(x, x) \in R$ and $(x, x) \in S$. Therefore ($x, x) \in R \cap S=U$. This shows $(x, x) \in U$, and hence $x U x$ for every element of A, so U is reflexive.
Next we show U is symmetric: Suppose $x, y \in A$, and $x U y$. We need to show that this implies $y U x$. Note that $x U y$ means $(x, y) \in U=R \cap S$. Thus $(x, y) \in R$ and $(x, y) \in S$. Since R and S are both equivalence relations (and hence both symmetric), it follows that $(y, x) \in R$ and $(y, x) \in S$. Therefore ($y, x) \in R \cap S=U$, meaning $y U x$. We've now proved that $x U y$ implies $y U x$ for any $x, y \in A$, so U is symmetric.
Next we show U is transitive: Suppose $x, y, z \in A$, and $x U y$ and $y U z$. We need to show that this implies $x U z$. Observe that $x U y$ and $y U z$ give us

$$
\begin{aligned}
& (x, y) \in U=R \cap S \\
& (y, z) \in U=R \cap S .
\end{aligned}
$$

It follows $(x, y) \in R$ and $(y, z) \in R$, and since R is transitive we also have $(x, z) \in R$.
Also $(x, y) \in S$ and $(y, z) \in S$, and since S is transitive we also have $(x, z) \in S$.
Therefore (x, z) is an element of both R and S, so $(x, z) \in R \cap S=U$. This means $x U z$. We've now seen that if $x U y$ and $y U z$, then $x U z$. Therefore U is transitive.

At this point we've shown that the relation $U=R \cap S$ is reflexive, symmetric and transitive, so it is an equivalence relation.

