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1. (14 points) Prove that x ∈ {12a + 45b : a, b ∈ Z} if and only if 3 | x.

Proof. (⇐=) First we show (with direct proof) that if x ∈ {12a + 45b : a, b ∈ Z}, then 3 | x.
Suppose x ∈ {12a + 45b : a, b ∈ Z}. This means x = 12a + 45b for some integers a and b.
As x = 12a + 45b = 3(4a + 15b), where 4a + 15b ∈ Z, we see that 3 | x.

(=⇒) Conversely, we now show (with direct proof) that if 3 | x, then x ∈ {12a + 45b : a, b ∈ Z}.
Suppose 3 | x. This means x = 3k for some integer k.
Observe now that x = 3k = 48k − 45k = 12 · (4k) + 45 · (−k) .
Letting a and b be the integers a = 4k and b = −k, the above gives x = 12a + 45b.
Therefore x ∈ {12a + 45b : a, b ∈ Z}.

2. (14 points) Suppose A, B,C and D are sets. Prove that (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Proof. Suppose (x, y) ∈ (A×B)∪ (C×D). (We want to show that this implies (x, y) ∈ (A∪C)× (B∪D).)
By definition of union, (x, y) ∈ (A×B) or (x, y) ∈ (C ×D).
We consider these cases separately.

CASE I: Suppose (x, y) ∈ (A×B).
By definition of the Cartesian product, we have x ∈ A and y ∈ B.
By definition of union, it follows that x ∈ A ∪ C and y ∈ B ∪D.
Again, by definition of the Cartesian product, we get (x, y) ∈ (A ∪ C)× (B ∪D).

Thus in this case we have (x, y) ∈ (A×B) ∪ (C ×D) implies (x, y) ∈ (A ∪ C)× (B ∪D).

CASE II: Suppose (x, y) ∈ (C ×D).
By definition of the Cartesian product, we have x ∈ C and y ∈ D.
By definition of union, it follows that x ∈ A ∪ C and y ∈ B ∪D.
Again, by definition of the Cartesian product, we get (x, y) ∈ (A ∪ C)× (B ∪D).

Thus in this case we have (x, y) ∈ (A×B) ∪ (C ×D) implies (x, y) ∈ (A ∪ C)× (B ∪D).

The above has shown (x, y) ∈ (A×B) ∪ (C ×D) implies (x, y) ∈ (A ∪ C)× (B ∪D),
and therefore (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).



3. (14 points) Prove that {3a + 5b : a, b ∈ Z} = Z.

Proof. First we will show that {3a + 5b : a, b ∈ Z} ⊆ Z.
Suppose x ∈ {3a + 5b : a, b ∈ Z}. This means that x = 3a + 5b for some integers a and b.
Then x = 3a + 5b is an integer, so x ∈ Z.
This reasoning establishes that {3a + 5b : a, b ∈ Z} ⊆ Z.

Next we will show that Z ⊆ {3a + 5b : a, b ∈ Z}.
Suppose x ∈ Z. Then x = 3 · (−3x) + 5 · 2x.
Thus x = 3a + 5b, where a = −3x ∈ Z and b = 2x ∈ Z. Consequently x ∈ {3a + 5b : a, b ∈ Z}.
The above has established that Z ⊆ {3a + 5b : a, b ∈ Z}.

As {3a + 5b : a, b ∈ Z} ⊆ Z and Z ⊆ {3a + 5b : a, b ∈ Z}, it follows that {3a + 5b : a, b ∈ Z} = Z

4. (15 points) Recall that Fiboacci Sequence is defined as F1 = 1, F2 = 1 and Fn+1 = Fn + Fn−1.
Use induction to prove that F 2
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4 + · · ·+ F 2

n = FnFn+1.

Proof. (Induction)

First, for the basis step, note that if n = 1, then the equation states that F 2
1 = F1F2, and this reduces to

the (true) statement 12 = 1 · 1. Thus the equation is true when n = 1.

(Although it is not necessary, we can also verify the statement for n = 2. It is F 2
1 + F 2

2 = F2F3, and this
reduces to the [true] statement 12 + 12 = 1 · 2. Thus the equation is true when n = 1.)

Next assume that for some k ≥ 1 we have F 2
1 + F 2

2 + F 2
3 + F 2

4 + · · ·+ F 2
n = FkFk+1, that is, assume that the

given equation is true for n = k. In what follows we show that this assumption implies that the equation is
true for n = k + 1. Observe that
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(The last step used the Fibonacci property Fk + Fk+1 = Fk+2.) The above has established that
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which means that the given equation is true for n = k + 1.

This completes the proof by induction.



5. (14 points) Use induction to prove that
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which means that the given equation is true for n = k + 1.

This completes the proof by induction.



6. (14 points) Prove or disprove:
If A and B are sets, then P(A ∪B) = P(A) ∪P(B).

This is False. Here is a counterexample:

Let A = {1} and B = {2}, so that we have

P(A) ∪P(B) = {∅, {1}} ∪ {∅, {2}} = {∅, {1}, {2}}. (1)

Now observe that
P(A ∪B) = P({1, 2}) = {∅, {1}, {2}, {1, 2}}. (2)

Equations (1) and (2) above establish that it is possible that P(A ∪B) 6= P(A) ∪P(B).



7. (15 points) Prove or disprove:
If R and S are two equivalence relations on a set A, then R ∩ S is also an equivalence relation on A.

This is TRUE. A proof follows.

Proof. Suppose R and S are two equivalence relations on a set A. Then since R ⊆ A×A and S ⊆ A×A, it
follows that R∩ S ⊆ A×A, so R∩ S is a relation on A. We need to check that it is an equivalence relation.
For simplicity, set U = R ∩ S, so we need to check that U is an equivalence relation.

First we show U is reflexive: Suppose x ∈ A. Since R and S are both reflexive relations on A (because
they are equivalence relations), it follows that (x, x) ∈ R and (x, x) ∈ S. Therefore (x, x) ∈ R∩S = U . This
shows (x, x) ∈ U , and hence xUx for every element of A, so U is reflexive.

Next we show U is symmetric: Suppose x, y ∈ A, and xUy. We need to show that this implies yUx. Note
that xUy means (x, y) ∈ U = R ∩ S. Thus (x, y) ∈ R and (x, y) ∈ S. Since R and S are both equivalence
relations (and hence both symmetric), it follows that (y, x) ∈ R and (y, x) ∈ S. Therefore (y, x) ∈ R∩S = U ,
meaning yUx. We’ve now proved that xUy implies yUx for any x, y ∈ A, so U is symmetric.

Next we show U is transitive: Suppose x, y, z ∈ A, and xUy and yUz. We need to show that this
implies xUz. Observe that xUy and yUz give us

(x, y) ∈ U = R ∩ S,

(y, z) ∈ U = R ∩ S.

It follows (x, y) ∈ R and (y, z) ∈ R, and since R is transitive we also have (x, z) ∈ R.
Also (x, y) ∈ S and (y, z) ∈ S, and since S is transitive we also have (x, z) ∈ S.
Therefore (x, z) is an element of both R and S, so (x, z) ∈ R ∩ S = U . This means xUz. We’ve now seen
that if xUy and yUz, then xUz. Therefore U is transitive.

At this point we’ve shown that the relation U = R ∩ S is reflexive, symmetric and transitive, so it is an
equivalence relation.


