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Mathematical Reason Test #2

Name: R. Hammack Score:

1. (14 points) Prove that = € {12a +45b:a,b € Z} if and only if 3| x.

Proof. (<) First we show (with direct proof) that if z € {12a + 45b: a,b € Z}, then 3| x.
Suppose x € {12a + 45b : a,b € Z}. This means x = 12a + 45b for some integers a and b.
As x = 12a + 45b = 3(4a + 15b), where 4a + 15b € Z, we see that 3 | x.

(=) Conversely, we now show (with direct proof) that if 3 | z, then x € {12a + 45b: a,b € Z}.

Suppose 3 | z. This means x = 3k for some integer k.

Observe now that © = 3k = 48k — 45k = ’ 12 (4k) + 45 - (—k) ‘

Letting a and b be the integers a = 4k and b = —k, the above gives x = 12a + 45b.

Therefore z € {12a + 45b: a,b € Z}. ]

2. (14 points) Suppose A, B,C and D are sets. Prove that (A x B)U (C x D) C (AUC) x (BU D).

Proof. Suppose (z,y) € (Ax B)U(C x D). (We want to show that this implies (z,y) € (AUC) x (BUD).)
By definition of union, (z,y) € (A x B) or (z,y) € (C x D).
We consider these cases separately.

CASE I: Suppose (z,y) € (A x B).

By definition of the Cartesian product, we have x € A and y € B.

By definition of union, it follows that x € AUC and y € BU D.

Again, by definition of the Cartesian product, we get (z,y) € (AUC) x (BU D).

Thus in this case we have (z,y) € (A x B) U (C x D) implies (x,y) € (AUC) x (BU D).
CASE II: Suppose (z,y) € (C x D).
By definition of the Cartesian product, we have x € C' and y € D.

By definition of union, it follows that x € AUC and y € BU D.
Again, by definition of the Cartesian product, we get (z,y) € (AUC) x (BU D).

Thus in this case we have (z,y) € (A x B) U (C x D) implies (x,y) € (AUC) x (BU D).

The above has shown (z,y) € (A x B) U (C x D) implies (z,y) € (AUC) x (BU D),
and therefore (A x B)U (C' x D) C (AUC) x (BUD). ]



3. (14 points) Prove that {3a +5b:a,b € Z} = Z.

Proof. First we will show that {3a + 5b: a,b € Z} C Z.

Suppose = € {3a + 5b: a,b € Z}. This means that = = 3a + 5b for some integers a and b.
Then x = 3a + 5b is an integer, so = € Z.

This reasoning establishes that {3a + 5b: a,b € Z} C Z.

Next we will show that Z C {3a +5b: a,b € Z}.

Suppose € Z. Then x = 3 - (—3z) + 5 - 2z.

Thus x = 3a + 5b, where a = =3z € Z and b = 2z € Z. Consequently = € {3a + 5b: a,b € Z}.
The above has established that Z C {3a + 5b: a,b € Z}.

As {3a+5b:a,beZ} CZ and Z C {3a+5b: a,b € Z}, it follows that {3a +5b:a,b e Z} =7 |

4. (15 points) Recall that Fiboacci Sequence is defined as F; =1, Fp =1 and F,,41 = F,, + F,—1.
Use induction to prove that FZ? 4+ F2 + FZ + FZ + -+ F2 = F,Fy ;.
Proof. (Induction)

First, for the basis step, note that if n = 1, then the equation states that F12 = I F5, and this reduces to
the (true) statement 12 = 1 - 1. Thus the equation is true when n = 1.

(Although it is not necessary, we can also verify the statement for n = 2. It is F? + Fy = FyF3, and this
reduces to the [true] statement 12 + 12 = 1 - 2. Thus the equation is true when n = 1.)

Next assume that for some k > 1 we have FZ + F§y + Fi + FZ + -+ -+ F? = F;,Fj1, that is, assume that the
given equation is true for n = k. In what follows we show that this assumption implies that the equation is
true for n = k 4+ 1. Observe that

FE+F+F;+Fi+- +FR+FE, =
(FE+F5 +F; +Ff+- + FR)+ Fiyy
FyFyw1 + Fiy
Fy1(F + Frp1) = Frp1Froo

(The last step used the Fibonacci property Fy + Fip11 = Fiio.) The above has established that
FP+ F}+F§+F}+ - +F}+F2 = Fy1Fpo,

which means that the given equation is true for n = k + 1.

This completes the proof by induction. [ |
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which means that the given equation is true for n = k + 1.

This completes the proof by induction. [ |



6. (14 points) Prove or disprove:
If A and B are sets, then (AU B) = Z(A) U Z(B).

This is False. Here is a counterexample:

Let A = {1} and B = {2}, so that we have
2(A) VU 2(B) = {0, {11} u{0,{2}} = {0, {1}, {2}}.

P(AUB) = 2({1,2}) = {0, {1},{2}, {1,2}} |

Now observe that

Equations (1) and (2) above establish that it is possible that Z2(AU B) # Z(A) U Z(B).



7. (15 points) Prove or disprove:
If R and S are two equivalence relations on a set A, then RN S is also an equivalence relation on A.

This is TRUE. A proof follows.

Proof. Suppose R and S are two equivalence relations on a set A. Then since RC Ax Aand S C Ax A, it
follows that RNS C A x A, so RN S is a relation on A. We need to check that it is an equivalence relation.
For simplicity, set U = RN S, so we need to check that U is an equivalence relation.

First we show U is reflexive: Suppose z € A. Since R and S are both reflexive relations on A (because
they are equivalence relations), it follows that (z,z) € R and (z,x) € S. Therefore (z,2) € RNS = U. This
shows (z,x) € U, and hence zUz for every element of A, so U is reflexive.

Next we show U is symmetric: Suppose x,y € A, and zUy. We need to show that this implies yUz. Note
that xUy means (z,y) € U = RN S. Thus (z,y) € R and (z,y) € S. Since R and S are both equivalence
relations (and hence both symmetric), it follows that (y,z) € R and (y,x) € S. Therefore (y,z) € RNS = U,
meaning yUx. We've now proved that zUy implies yUx for any x,y € A, so U is symmetric.

Next we show U is transitive: Suppose z,y,z € A, and zUy and yUz. We need to show that this
implies xUz. Observe that zUy and yUz give us

(x,y) eU=RNS,

(y,2) eU=RNS.

It follows (x,y) € R and (y, z) € R, and since R is transitive we also have (z,z) € R.

Also (z,y) € S and (y,2) € S, and since S is transitive we also have (z, z) € S.

Therefore (x, z) is an element of both R and 5, so (x,z) € RN S = U. This means zUz. We've now seen
that if xUy and yUz, then zUz. Therefore U is transitive.

At this point we’ve shown that the relation U = RN S is reflexive, symmetric and transitive, so it is an
equivalence relation. [ |



