Introduction to

1. (14 points) Prove that $x \in\{12 a+45 b: a, b \in \mathbb{Z}\}$ if and only if $3 \mid x$.
2. (14 points) Suppose A, B, C and D are sets. Prove that $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
3. (14 points) Prove that $\{3 a+5 b: a, b \in \mathbb{Z}\}=\mathbb{Z}$.
4. (15 points) Recall that Fibonacci Sequence is defined as $F_{1}=1, F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$. Use induction to prove that $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
5. (14 points) Use induction to prove that $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$.
6. (14 points) Prove or disprove:

If A and B are sets, then $\mathscr{P}(A \cup B)=\mathscr{P}(A) \cup \mathscr{P}(B)$.
7. (15 points) Prove or disprove:

If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

