
Introduction to Test 1 March 6, 2012
Mathematical Reason MATH 300

Name: R. Hammack Score:

Directions: Please answer the questions in the space provided. To get full credit you must show all of
your work. Use of calculators and other electronic devices is not allowed on this test.

1. Short answer. Write each of the following sets by listing its elements between braces or describing
it with a familiar symbol or symbols.

(a)
⋂
n∈N

{
x ∈ R :

−1
n
≤ x ≤ 1

n

}
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {0}

(b)
⋃
n∈N

{
x ∈ R :

−1
n
≤ x ≤ 1

n

}
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−1, 1] = {x ∈ R : −1 ≤ x ≤ 1}

(c)
{
X ⊆ {a, b, c, d} : |P(X)| = 8

}
= . . . . . . . . . . . . . . . . . . .

{
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}

}

2. Short answer. Write the following sets in set-builder notation.

(a)
{

0, 1, 4, 9, 16, 25, 36, . . .
}

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {n2 : n ∈ Z}

(b)
{

. . . ,
2
5
,

1
2
, 0,

1
4
,

2
7
,

3
10

,
4
13

,
5
16

,
6
19

, . . .

}
= . . . . . . . . . . . . . . . . . . . . . . . . . .

{
n

1 + 3n
: n ∈ Z

}

(c)
{
{2}, {2, 4}, {2, 4, 6}, {2, 4, 6, 8}, {2, 4, 6, 8, 10}, . . .

}
= . . . . . . . . . . . .

{
{2, 4, . . . , 2n} : n ∈ N

}



3. Are Q⇒ P and (∼ P )⇒ (Q∧ ∼ Q) logically equivalent? Support your answer with a truth table.

P Q Q⇒ P ∼ P (Q∧ ∼ Q) (∼ P )⇒ (Q∧ ∼ Q)
T T T F F T
T F T F F T
F T F T F F
F F T T F F

From the table, we see that the columns for Q ⇒ P and (∼ P ) ⇒ (Q∧ ∼ Q) are not the same.
Therefore the two expressions are not logically equivalent.

4. This problem concerns the following statement.
P : Given any x ∈ R, there exists an element y ∈ R for which xy = 1.

(a) Is the statement P true or false? Explain.

It’s FALSE, because given x = 0 ∈ R, there does not exist any real number y for which xy = 1.

(b) Form the negation ∼ P . Write your answer as an English sentence.
(The sentence may use mathematical symbols.)

There exists a number a real number x for which xy 6= 1 for every real number y.



5. This problem concerns 4-card hands dealt off of a standard 52-card deck. How many 4-card hands
are there for which all four cards are of the same suit or all four cards are red?

Let A be the set of all 4-card hands for which all four cards are of the same suit.

Let B be the set of all 4-card hands for which all four cards are red.

The answer we seek is |A ∪B|.
Because |A ∪B| = |A|+ |B| − |A ∩B|, we need to calculate |A|, |B| and |A ∩B|.

Given any one suit (say hearts), there are 13 cards of that suit, so the total number of 4-card hands
consisting only of hearts is

(
13
4

)
. Similarly there are

(
13
4

)
4-card hands consisting only of diamonds,(

13
4

)
with only spades, and

(
13
4

)
with only clubs. Thus there are 4

(
13
4

)
4-card hands in which all cards

have the same suit. Therefore |A| = 4
(
13
4

)
.

As there are 26 red cards, it follows that |B| =
(
26
4

)
.

Finally, A∩B is the set of all 4-card hands in which all four cards are of the same suit and they are
all red. Reasoning as we did for |A|, it follows that |A ∩B| = 2

(
13
4

)
.

Therefore our final answer is

|A ∪B| = |A|+ |B| − |A ∩B|

= 4
(

13
4

)
+
(

26
4

)
− 2
(

13
4

)
= 2

(
13
4

)
+
(

26
4

)
= 2 13!

4! 9! + 26!
4! 22!

6. Suppose a, b, c ∈ Z. Prove that if a | b and a | (b2 + c), then a | c. (Hint: Try direct.)

Proof (Direct) Suppose that a | b and a | (b2 + c)
As a | b, the definition of divides guarantees that b = ax for some integer x.

Likewise, as a | (b2 + c), the definition of divides guarantees that b2 + c = ay for some integer y.
Substituting the first boxed equation into the second, we get (ax)2 + c = ay, which is a2x2 + c = ay.
Transposing this yields c = ay − a2x2 = a(y − ax2).
Therefore c = a(y − ax2), where y − ax2 ∈ Z.
The definition of divides now implies a | c.



7. Suppose a, b, c ∈ Z. Prove that if a - bc, then a - b and a - c. (Hint: Try contrapositive.)

Proof (Contrapositive)
Suppose it is not the case that a - b and a - c.
Then (Using DeMorgan’s Law) a | b or a | c.
We now break into cases according to whether a | b or a | c.

CASE 1 Suppose a | b
Then b = ax for some integer x, by definition of divides.
From this, bc = a(cx), where cx ∈ Z, which means a | bc, by definition of divides.

CASE 2 Suppose a | c
Then c = ax for some integer x, by definition of divides.
From this bc = bax = a(bx), where bx ∈ Z, which means a | bc, by definition of divides.

The above cases show that whether a | b or a | c, it is true that a | bc.
Therefore it is not the case that a - bc.

Editorial Comment: A third case under which a | b and a | c is not necessary, because in this
event either Case 1 or 2 above applies.

8. Prove that
√

6 is irrational. (Hint: Try contradiction.)

Proof Suppose for the sake of contradiction that
√

6 is not irrational, that is, that it is rational.
Then

√
6 =

a

b
for some integers a and b.

We may assume that this fraction is fully reduced; In particular a and b are not both even.
From the above equation we get b

√
6 = a. Squaring both sides, 6b2 = a2.

Therefore a2 = 2(3b2); it follows that a2 is even, so a is even.
Thus a = 2m for some integer m.
Substituting this into 6b2 = a2 gives 6b2 = 4m2, or 3b2 = 2m2

From 3b2 = 2m2 it follows that 3b2 is even.
Then b is even too, for otherwise b2 (hence also 3b2) would be odd.
The boxed terms above imply that a and b are not both even and a and b are both even.
This contradiction proves the theorem.



9. Suppose x, y ∈ R. Prove that if xy − x2 + x3 ≥ x2y3 + 4, then x ≥ 0 or y ≤ 0.

Proof (Contrapositive) Suppose it is not the case that x ≥ 0 or y ≤ 0.
Then DeMorgan’s Laws give x < 0 and y > 0.
Therefore x is negative and y is positive.
Thus xy − x2 + x3 is negative (all its terms are negative) and x2y3 + 4 is positive.
From this, xy − x2 + x3 < x2y3 + 4.
Therefore it is not the case that xy − x2 + x3 ≥ x2y3 + 4.

10. Suppose a, b, c ∈ Z, and n ∈ N. Prove the following:
If a ≡ b (mod n) and a ≡ c (mod n), then 2a ≡ b + c (mod n).

Proof (Direct) Suppose a ≡ b (mod n) and a ≡ c (mod n).
By definition of congruence modulo n, we have n | (a− b) and n | (a− c).
By definition of divides, this gives a− b = nk and a− c = n` for some integers k and `.
Adding a− b = nk to a− c = n` gives a− b + a− c = nk + n`.
Simplifying this produces 2a− (b + c) = n(k + `).
Since k + ` ∈ Z, it follows from the definition of divides that n | (2a− (b + c)).
Finally, from this the definition of congruence modulo n implies 2a ≡ b + c (mod n).


