Introduction to	MATH 300	April 8, 2010
Mathematical Reason	Test $#2$	

R. Hammack

Score:____

PART I. Prove the following statements.

Name:_

1. Prove that an integer a is even if and only if $a^2 + 2a + 9$ is odd.

Proof. First we will show that if a is even, then $a^2 + 2a + 9$ is odd. We use direct proof. Suppose a is even. Then a = 2k for some integer k, and

$$a^{2} + 2a + 9 = (2k)^{2} + 2(2k) + 9 = 4k^{2} + 4k + 8 + 1 = 2(2k^{2} + 2k + 4) + 1.$$

This shows that $a^2 + 2a + 9$ is twice an integer plus 1, so it is odd.

Conversely, we will show that if $a^2 + 2a + 9$ is odd, then a is even.

We use contrapositive proof; that is we will assume a is not even and show $a^2 + 2a + 9$ is not odd. Suppose a is not even, so it is odd, and thus a = 2k + 1 for some integer k. Then

$$a^{2} + 2a + 9 = (2k + 1)^{2} + 2(2k + 1) + 9$$

= $4k^{2} + 4k + 1 + 4k + 2 + 9$
= $4k^{2} + 8k + 12$
= $2(2k^{2} + 4k + 6).$

This shows that $a^2 + 2a + 9$ is twice an integer, so it is even.

The proof is now complete.

2. Suppose A, B and C are nonempty sets. Prove that if $A \times B \subseteq B \times C$, then $A \subseteq C$. **Proof.** We will use direct proof. Suppose $A \times B \subseteq B \times C$.

In what follows we show $A \subseteq C$. Suppose $a \in A$. Since B is not empty, there is an element $b \in B$, so $(a, b) \in A \times B$. (By definition of \times .) But since $A \times B \subseteq B \times C$, it follows that $(a, b) \in B \times C$. (By definition of \subseteq .) In particular, this gives us $a \in B$, so it now follows that $(a, a) \in A \times B$. (By definition of \times .) But again, since $A \times B \subseteq B \times C$, it we get $(a, a) \in A \times C$. (By definition of \subseteq .) In particular, this means $a \in C$. (By definition of \times .)

We've now shown $a \in A$ implies $a \in C$, so $A \subseteq C$.

3. Use induction to prove that $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Proof: (Mathematical Induction)

- (1) When n = 1 the statement is $1^3 = \frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$, which is true.
- (2) Now assume the statement is true for some integer $n = k \ge 1$, that is assume $1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$. Observe that this implies the statement is true for n = k+1, as follows:

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + k^{3}) + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4}$$
$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$
$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$
$$= \frac{(k+1)^{2}(k^{2} + 4(k+1)^{1})}{4}$$
$$= \frac{(k+1)^{2}(k^{2} + 4k + 4)}{4}$$
$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$
$$= \frac{(k+1)^{2}((k+1)+1)^{2}}{4}$$

Therefore $1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^2((k+1)+1)^2}{4}$, which means the statement is true for n = k+1.

This completes the proof by mathematical induction.

4. There exists a set X for which $\mathbb{Z} \in X$, $\mathbb{N} \in \mathscr{P}(X)$ and $\mathbb{R} \in \mathscr{P}(X)$.

Proof. Consider the set $X = \{\mathbb{Z}\} \cup \mathbb{R}$. (That is, X contains every real number, and it also contains the set of all integers.) We have $\mathbb{N} \subseteq X$ and $\mathbb{R} \subseteq X$, and this means $\mathbb{N} \in \mathscr{P}(X)$ and $\mathbb{R} \in \mathscr{P}(X)$. Also, we have $\mathbb{Z} \in \{\mathbb{Z}\}$, so $\mathbb{Z} \in \{\mathbb{Z}\} \cup \mathbb{R} = X$.

5. Use induction to prove that $24|(5^{2n}-1)|$ for every integer $n \ge 0$.

Proof. The proof is by mathematical induction.

- (1) For n = 0, the statement is $24|(5^{2\cdot 0} 1)$. This simplifies to 24|0, which is true.
- (2) Now assume the statement is true for some integer $n = k \ge 1$, that is assume $24|(5^{2k} 1)$. This means $5^{2k} - 1 = 24a$ for some integer a, and from this we get $5^{2k} = 24a + 1$. Now observe that

$$5^{2(k+1)} - 1 = 5^{2k+2} - 1 = 5^{2}5^{2k} - 1 = 5^{2}(24a + 1) - 1 = 25(24a + 1) - 1 = 25(24a + 1) - 1 = 25 \cdot 24a + 25 - 1 = 24(25a + 1)$$

This shows $5^{2(k+1)} - 1 = 24(25a+1)$, which means $24|5^{2(k+1)} - 1$.

This completes the proof by mathematical induction.

PART II. (10 points each) Decide if the following statements are true or false. Prove the true statements; disprove the false ones.

6. If A, B and C are sets, then $A \cup (B - C) = (A \cup B) - (A \cup C)$.

This is FALSE. Here is a counterexample:

Let $A = B = C = \{1\}$. Then $A \cup (B - C) = \{1\}$. Also $(A \cup B) - (A \cup C) = \emptyset$. This example shows that it is not always true that $A \cup (B - C) = (A \cup B) - (A \cup C)$.

7. Suppose a and b are integres. If a|b and b|a, then a = b. This is FALSE. Here is a counterexample: Let a = 2 and b = -2. Then a|b and b|a, but $a \neq b$.

8. If A, B, C are sets and $A \cap B \cap C = \emptyset$, then $|A \cup B \cup C| = |A| + |B| + |C|$. This is FALSE. Here is a counterexample: Let $A = \{1, 2\}, B = \{2, 3\}$ and $C = \{3, 1\}$. Then $|A \cup B \cup C| = |\{1, 2, 3\}| = 3 \neq 6 = |A| + |B| + |C|$.

- 9. Let $A = \{a, b, c, d, e\}$. Consider the relation $R = \{(a, a), (a, b), (b, a), (b, b), (d, c), (d, e), (c, e)\}$ on A.
 - (a) Draw a diagram for the relation R.

- (b) Is the relation R reflexive? NO. For example, $(c, c) \notin R$.
- (c) Is the relation R symmetric? NO. For example, $(c, e) \in R$ but $(e, c) \notin R$.
- (d) Is the relation R transitive? YES. Whenever xRy and yRz, then also xRz.
- 10. Let n be a fixed positive integer. As noted in class, congruence modulo n is a relation on the set \mathbb{Z} . Prove that this relation is transitive.

Proof. We need to show that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. We will prove this conditional statement with direct proof.

Suppose that $a, b, c \in \mathbb{Z}$, and $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. This means $n \mid (a - b)$ and $n \mid (b - c)$. Therefore a - b = nk and $b - c = n\ell$ for integers k and ℓ . Adding, we get $(a - b) + (b - c) = nk + n\ell$. Simplifying, $a - c = n(k + \ell)$. Consequently $n \mid (a - c)$. Therefore $a \equiv c \pmod{n}$.

We have now shown that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. Consequently, the relation is transitive.