Name: \qquad R. Hammack

PART I. Prove the following statements.

1. Prove that an integer a is even if and only if $a^{2}+2 a+9$ is odd.

Proof. First we will show that if a is even, then $a^{2}+2 a+9$ is odd. We use direct proof.
Suppose a is even. Then $a=2 k$ for some integer k, and

$$
a^{2}+2 a+9=(2 k)^{2}+2(2 k)+9=4 k^{2}+4 k+8+1=2\left(2 k^{2}+2 k+4\right)+1 .
$$

This shows that $a^{2}+2 a+9$ is twice an integer plus 1 , so it is odd.

Conversely, we will show that if $a^{2}+2 a+9$ is odd, then a is even.
We use contrapositive proof; that is we will assume a is not even and show $a^{2}+2 a+9$ is not odd.
Suppose a is not even, so it is odd, and thus $a=2 k+1$ for some integer k. Then

$$
\begin{aligned}
a^{2}+2 a+9 & =(2 k+1)^{2}+2(2 k+1)+9 \\
& =4 k^{2}+4 k+1+4 k+2+9 \\
& =4 k^{2}+8 k+12 \\
& =2\left(2 k^{2}+4 k+6\right) .
\end{aligned}
$$

This shows that $a^{2}+2 a+9$ is twice an integer, so it is even.
The proof is now complete.
2. Suppose A, B and C are nonempty sets. Prove that if $A \times B \subseteq B \times C$, then $A \subseteq C$.

Proof. We will use direct proof. Suppose $A \times B \subseteq B \times C$.

In what follows we show $A \subseteq C$.
Suppose $a \in A$.
Since B is not empty, there is an element $b \in B$, so $(a, b) \in A \times B$. (By definition of \times.)
But since $A \times B \subseteq B \times C$, it follows that $(a, b) \in B \times C$. (By definition of \subseteq.)
In particular, this gives us $a \in B$, so it now follows that ($a, a) \in A \times B$. (By definition of \times.)
But again, since $A \times B \subseteq B \times C$, it we get ($a, a) \in A \times C$. (By definition of \subseteq.)
In particular, this means $a \in C$. (By definition of \times.)
We've now shown $a \in A$ implies $a \in C$, so $A \subseteq C$.
3. Use induction to prove that $1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$.

Proof: (Mathematical Induction)
(1) When $n=1$ the statement is $1^{3}=\frac{1^{2}(1+1)^{2}}{4}=\frac{4}{4}=1$, which is true.
(2) Now assume the statement is true for some integer $n=k \geq 1$, that is assume $1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}$.
Observe that this implies the statement is true for $n=k+1$, as follows:

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}+(k+1)^{3} & = \\
\left(1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}\right)+(k+1)^{3} & = \\
\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} & =\frac{k^{2}(k+1)^{2}}{4}+\frac{4(k+1)^{3}}{4} \\
& =\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{(k+1)^{2}\left(k^{2}+4(k+1)^{1}\right)}{4} \\
& =\frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4}
\end{aligned}
$$

Therefore $1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{(k+1)^{2}((k+1)+1)^{2}}{4}$, which means the statement is true for $n=k+1$.

This completes the proof by mathematical induction.
4. There exists a set X for which $\mathbb{Z} \in X, \mathbb{N} \in \mathscr{P}(X)$ and $\mathbb{R} \in \mathscr{P}(X)$.

Proof. Consider the set $X=\{\mathbb{Z}\} \cup \mathbb{R}$.
(That is, X contains every real number, and it also contains the set of all integers.)
We have $\mathbb{N} \subseteq X$ and $\mathbb{R} \subseteq X$, and this means $\mathbb{N} \in \mathscr{P}(X)$ and $\mathbb{R} \in \mathscr{P}(X)$.
Also, we have $\mathbb{Z} \in\{\mathbb{Z}\}$, so $\mathbb{Z} \in\{\mathbb{Z}\} \cup \mathbb{R}=X$.
5. Use induction to prove that $24 \mid\left(5^{2 n}-1\right)$ for every integer $n \geq 0$.

Proof. The proof is by mathematical induction.
(1) For $n=0$, the statement is $24 \mid\left(5^{2 \cdot 0}-1\right)$. This simplifies to $24 \mid 0$, which is true.
(2) Now assume the statement is true for some integer $n=k \geq 1$, that is assume $24 \mid\left(5^{2 k}-1\right)$.

This means $5^{2 k}-1=24 a$ for some integer a, and from this we get $5^{2 k}=24 a+1$.
Now observe that

$$
\begin{aligned}
5^{2(k+1)}-1 & = \\
5^{2 k+2}-1 & = \\
5^{2} 5^{2 k}-1 & = \\
5^{2}(24 a+1)-1 & = \\
25(24 a+1)-1 & = \\
25 \cdot 24 a+25-1 & =24(25 a+1)
\end{aligned}
$$

This shows $5^{2(k+1)}-1=24(25 a+1)$, which means $24 \mid 5^{2(k+1)}-1$.
This completes the proof by mathematical induction.

PART II. (10 points each) Decide if the following statements are true or false. Prove the true statements; disprove the false ones.
6. If A, B and C are sets, then $A \cup(B-C)=(A \cup B)-(A \cup C)$.

This is FALSE. Here is a counterexample:
Let $A=B=C=\{1\}$.
Then $A \cup(B-C)=\{1\}$.
Also $(A \cup B)-(A \cup C)=\emptyset$.
This example shows that it is not always true that $A \cup(B-C)=(A \cup B)-(A \cup C)$.
7. Suppose a and b are integres. If $a \mid b$ and $b \mid a$, then $a=b$.

This is FALSE. Here is a counterexample:
Let $a=2$ and $b=-2$.
Then $a \mid b$ and $b \mid a$, but $a \neq b$.
8. If A, B, C are sets and $A \cap B \cap C=\emptyset$, then $|A \cup B \cup C|=|A|+|B|+|C|$.

This is FALSE. Here is a counterexample:
Let $A=\{1,2\}, B=\{2,3\}$ and $C=\{3,1\}$.
Then $|A \cup B \cup C|=|\{1,2,3\}|=3 \neq 6=|A|+|B|+|C|$.
9. Let $A=\{a, b, c, d, e\}$. Consider the relation $R=\{(a, a),(a, b),(b, a),(b, b),(d, c),(d, e),(c, e)\}$ on A.
(a) Draw a diagram for the relation R.

(b) Is the relation R reflexive? \qquad
(c) Is the relation R symmetric? $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. NO. For example, $(c, e) \in R$ but $(e, c) \notin R$.
(d) Is the relation R transitive?
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ YES. Whenever $x R y$ and $y R z$, then also $x R z$.
10. Let n be a fixed positive integer. As noted in class, congruence modulo n is a relation on the set \mathbb{Z}. Prove that this relation is transitive.

Proof. We need to show that if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
We will prove this conditional statement with direct proof.

Suppose that $a, b, c \in \mathbb{Z}$, and $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$.
This means $n \mid(a-b)$ and $n \mid(b-c)$.
Therefore $a-b=n k$ and $b-c=n \ell$ for integers k and ℓ.
Adding, we get $(a-b)+(b-c)=n k+n \ell$.
Simplifying, $a-c=n(k+\ell)$.
Consequently $n \mid(a-c)$.
Therefore $a \equiv c(\bmod n)$.

We have now shown that if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
Consequently, the relation is transitive.

