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PART I. Prove the following statements.

1. Prove that an integer a is even if and only if a2 + 2a + 9 is odd.

Proof. First we will show that if a is even, then a2 + 2a + 9 is odd. We use direct proof.
Suppose a is even. Then a = 2k for some integer k, and

a2 + 2a + 9 = (2k)2 + 2(2k) + 9 = 4k2 + 4k + 8 + 1 = 2(2k2 + 2k + 4) + 1.

This shows that a2 + 2a + 9 is twice an integer plus 1, so it is odd.

Conversely, we will show that if a2 + 2a + 9 is odd, then a is even.
We use contrapositive proof; that is we will assume a is not even and show a2 + 2a + 9 is not odd.
Suppose a is not even, so it is odd, and thus a = 2k + 1 for some integer k. Then

a2 + 2a + 9 = (2k + 1)2 + 2(2k + 1) + 9
= 4k2 + 4k + 1 + 4k + 2 + 9
= 4k2 + 8k + 12
= 2(2k2 + 4k + 6).

This shows that a2 + 2a + 9 is twice an integer, so it is even.

The proof is now complete.

2. Suppose A, B and C are nonempty sets. Prove that if A×B ⊆ B × C, then A ⊆ C.

Proof. We will use direct proof. Suppose A×B ⊆ B × C.

In what follows we show A ⊆ C.
Suppose a ∈ A.
Since B is not empty, there is an element b ∈ B, so (a, b) ∈ A×B. (By definition of ×.)
But since A×B ⊆ B × C, it follows that (a, b) ∈ B × C. (By definition of ⊆.)
In particular, this gives us a ∈ B, so it now follows that (a, a) ∈ A×B. (By definition of ×.)
But again, since A×B ⊆ B × C, it we get (a, a) ∈ A× C. (By definition of ⊆.)
In particular, this means a ∈ C. (By definition of ×.)

We’ve now shown a ∈ A implies a ∈ C, so A ⊆ C.



3. Use induction to prove that 13 + 23 + 33 + 43 + · · ·+ n3 =
n2(n + 1)2

4
.

Proof: (Mathematical Induction)

(1) When n = 1 the statement is 13 = 12(1+1)2

4 = 4
4 = 1, which is true.

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

13 + 23 + 33 + 43 + · · ·+ k3 =
k2(k + 1)2

4
.

Observe that this implies the statement is true for n = k + 1, as follows:

13 + 23 + 33 + 43 + · · ·+ k3 + (k + 1)3 =
(13 + 23 + 33 + 43 + · · ·+ k3) + (k + 1)3 =

k2(k + 1)2

4
+ (k + 1)3 =

k2(k + 1)2

4
+

4(k + 1)3

4

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1)1)

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
(k + 1)2((k + 1) + 1)2

4

Therefore 13 + 23 + 33 + 43 + · · ·+ k3 + (k + 1)3 =
(k + 1)2((k + 1) + 1)2

4
,

which means the statement is true for n = k + 1.

This completes the proof by mathematical induction.



4. There exists a set X for which Z ∈ X, N ∈P(X) and R ∈P(X).

Proof. Consider the set X = {Z} ∪ R.
(That is, X contains every real number, and it also contains the set of all integers.)
We have N ⊆ X and R ⊆ X, and this means N ∈P(X) and R ∈P(X).
Also, we have Z ∈ {Z}, so Z ∈ {Z} ∪ R = X.

5. Use induction to prove that 24|(52n − 1) for every integer n ≥ 0.

Proof. The proof is by mathematical induction.

(1) For n = 0, the statement is 24|(52·0 − 1). This simplifies to 24|0, which is true.

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume 24|(52k − 1).
This means 52k − 1 = 24a for some integer a, and from this we get 52k = 24a + 1.
Now observe that

52(k+1) − 1 =
52k+2 − 1 =
5252k − 1 =

52(24a + 1)− 1 =
25(24a + 1)− 1 =

25 · 24a + 25− 1 = 24(25a + 1)

This shows 52(k+1) − 1 = 24(25a + 1), which means 24|52(k+1) − 1.

This completes the proof by mathematical induction.



PART II. (10 points each) Decide if the following statements are true or false. Prove the true statements; disprove
the false ones.

6. If A, B and C are sets, then A ∪ (B − C) = (A ∪B)− (A ∪ C).

This is FALSE. Here is a counterexample:

Let A = B = C = {1}.
Then A ∪ (B − C) = {1}.
Also (A ∪B)− (A ∪ C) = ∅.
This example shows that it is not always true that A ∪ (B − C) = (A ∪B)− (A ∪ C).

7. Suppose a and b are integres. If a|b and b|a, then a = b.

This is FALSE. Here is a counterexample:

Let a = 2 and b = −2.
Then a|b and b|a, but a 6= b.

8. If A, B,C are sets and A ∩B ∩ C = ∅, then |A ∪B ∪ C| = |A|+ |B|+ |C|.
This is FALSE. Here is a counterexample:
Let A = {1, 2}, B = {2, 3} and C = {3, 1}.
Then |A ∪B ∪ C| = |{1, 2, 3}| = 3 6= 6 = |A|+ |B|+ |C|.



PART III. (10 points each)

9. Let A = {a, b, c, d, e}. Consider the relation R = {(a, a), (a, b), (b, a), (b, b), (d, c), (d, e), (c, e)} on A.

(a) Draw a diagram for the relation R.

a

b

c

d e

(b) Is the relation R reflexive? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NO. For example, (c, c) /∈ R.

(c) Is the relation R symmetric? . . . . . . . . . . . . . . . . . . . . . . . . . . . NO. For example, (c, e) ∈ R but (e, c) /∈ R.

(d) Is the relation R transitive? . . . . . . . . . . . . . . . . . . . . . . . . YES. Whenever xRy and yRz, then also xRz.

10. Let n be a fixed positive integer. As noted in class, congruence modulo n is a relation on the set Z.
Prove that this relation is transitive.

Proof. We need to show that if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
We will prove this conditional statement with direct proof.

Suppose that a, b, c ∈ Z, and a ≡ b (mod n) and b ≡ c (mod n).
This means n | (a− b) and n | (b− c).
Therefore a− b = nk and b− c = n` for integers k and `.
Adding, we get (a− b) + (b− c) = nk + n`.
Simplifying, a− c = n(k + `).
Consequently n | (a− c).
Therefore a ≡ c (mod n).

We have now shown that if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
Consequently, the relation is transitive.


