Additional Induction Problems

- 1. If n is a natural number, then $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ Proof. (By induction) Basis Step. If n = 0, then the statement is $0^2 = \frac{0(0+1)(2\cdot0+1)}{6}$, or just 0 = 0. Inductive Step. Assume that for $k \ge 0$, the following is a true statement: $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$. Add $(k+1)^2$ to both sides to get $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[k(2k+1)+6(k+1)]}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[2k^2 + k + 6k + 6]}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[2k^2 + k + 6k + 6]}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[(k+2)(2k+3)]}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[(k+2)(2k+3)]}{6}$ $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)[(k+1)+1)(2(k+1)+1)]}{6}$ Thus the statement is true for k + 1, and this proves the theorem.
- 2. If n is a natural number, then $9|(n^3 + (n+1)^3 + (n+2)^3)$.

Proof. (By induction.) Basis Step. If n = 0, then the statement is $9|(0^3 + (0+1)^3 + (0+2)^3)$, which is the true statement 9|9.

Inductive Step. Assume that for $k \ge 0$, the statement $9|(k^3 + (k+1)^3 + (k+2)^3)$ is true. We want to show that $9|((k+1)^3 + (k+1+1)^3 + (k+1+2)^3)$. Now, $(k+1)^3 + (k+1+1)^3 + (k+1+2)^3 = (k+1)^3 + (k+2)^3 + (k+3)^3 = (k+1)^3 + (k+2)^3 + (k^3 + 3k^23 + 3k^3^2 + 3^3) = (k+1)^3 + (k+2)^3 + (k^3 + 9k^2 + 27k + 27) = (k^3 + (k+1)^3 + (k+2)^3) + (9k^2 + 27k + 27) = (k^3 + (k+1)^3 + (k+2)^3) + 9(k^2 + 3k + 3).$

Look at the above expression. It is the sum of two terms, $(k^3 + (k+1)^3 + (k+2)^3)$ and $9(k^2 + 3k + 3)$. By the inductive hypothesis, 9 divides the first term, and clearly 9 divides the second, by definition of divides. Thus it follows that 9 must divide the sum. This means $9|((k+1)^3 + (k+1+1)^3 + (k+1+2)^3).$

3. If n is a natural number, then $\sum_{k=0}^{n} F_k = F_{n+2} - 1$

Proof (by induction).

Basis Step. If n = 0, then the statement is $\sum_{k=0}^{0} F_k = F_{0+2} - 1$, which is the statement $F_0 = F_{0+2} - 1$, or $F_0 = F_2 - 1$. Since $F_0 = 1$ and $F_2 = 2$, you can see that this is a true statement.

Inductive Step. Suppose that $\Sigma_{k=0}^{k}F_{k} = F_{k+2} - 1$ for some natural number k. We want to show that $\Sigma_{k=0}^{k+1}F_{k} = F_{k+1+2} - 1$. Begin with the equation $\Sigma_{k=0}^{k}F_{k} = F_{k+2} - 1$, and add an F_{k+1} to both sides. Then you get the equation $\Sigma_{k=0}^{k+1}F_{k} = F_{k+2} + F_{k+1} - 1$, Now use the fact that $F_{k+2} + F_{k+1} = F_{k+3}$, and we get $\Sigma_{k=0}^{k+1}F_{k} = F_{k+3} - 1$. This proves the Theorem.

4. If n is a natural number, then $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.

Proof (by induction).

Basis Step. If n = 0, then the statement is $\sum_{k=0}^{0} F_k^2 = F_0 F_{0+1}$, which is the statement $F_0^2 = F_0 F_1$. Since $F_0 = 1 = F_1$, this is just the true statement $1^2 = (1)(1)$.

Inductive Step. Suppose that $\sum_{k=0}^{k} F_k^2 = F_k F_{k+1}$ for some natural number k. We want to show that $\sum_{k=0}^{k+1} F_k^2 = F_{k+1} F_{k+1+1}$. Begin with the equation $\sum_{k=0}^{k} F_k^2 = F_k F_{k+1}$, and add an F_{k+1}^2 to both sides. Then you get the equation $\sum_{k=0}^{k+1} F_k^2 = F_k F_{k+1} + F_{k+1}^2$. Factoring, we get $\sum_{k=0}^{k+1} F_k^2 = F_{k+1} (F_k + F_{k+1})$. Now use the fact that $F_k + F_{k+1} = F_{k+2}$, and we get $\sum_{k=0}^{k+1} F_k^2 = F_{k+1} F_{k+2}$. This shows $\sum_{k=0}^{k+1} F_k^2 = F_{k+1} F_{k+1+1}$ so the theorem is proved.