Additional Induction Problems

1. If n is a natural number, then $0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

Proof. (By induction)
Basis Step. If $n=0$, then the statement is $0^{2}=\frac{0(0+1)(2 \cdot 0+1)}{6}$, or just $0=0$.
Inductive Step. Assume that for $k \geq 0$, the following is a true statement:
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}=\frac{\bar{k}(k+1)(2 k+1)}{6}$.
Add $(k+1)^{2}$ to both sides to get
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)^{2}}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)\left[2 k^{2}+k+6 k+6\right]}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)[(k+2)(2 k+3)]}{6}$
$0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)[(k+1+1)(2(k+1)+1)]}{6}$
Thus the statement is true for $k+1$, and this proves the theorem.
2. If n is a natural number, then $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$.

Proof. (By induction.)
Basis Step. If $n=0$, then the statement is $9 \mid\left(0^{3}+(0+1)^{3}+(0+2)^{3}\right)$, which is the true statement $9 \mid 9$.
Inductive Step. Assume that for $k \geq 0$, the statement $9 \mid\left(k^{3}+(k+1)^{3}+(k+2)^{3}\right)$ is true.
We want to show that $9 \mid\left((k+1)^{3}+(k+1+1)^{3}+(k+1+2)^{3}\right)$.
Now, $(k+1)^{3}+(k+1+1)^{3}+(k+1+2)^{3}$
$=(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$
$=(k+1)^{3}+(k+2)^{3}+\left(k^{3}+3 k^{2} 3+3 k 3^{2}+3^{3}\right)$
$=(k+1)^{3}+(k+2)^{3}+\left(k^{3}+9 k^{2}+27 k+27\right)$
$=\left(k^{3}+(k+1)^{3}+(k+2)^{3}\right)+\left(9 k^{2}+27 k+27\right)$
$=\left(k^{3}+(k+1)^{3}+(k+2)^{3}\right)+9\left(k^{2}+3 k+3\right)$.
Look at the above expression. It is the sum of two terms, $\left(k^{3}+(k+1)^{3}+(k+2)^{3}\right)$ and $9\left(k^{2}+3 k+3\right)$. By the inductive hypothesis, 9 divides the first term, and clearly 9 divides the second, by definition of divides. Thus it follows that 9 must divide the sum. This means $9 \mid\left((k+1)^{3}+(k+1+1)^{3}+(k+1+2)^{3}\right)$.
3. If n is a natural number, then $\sum_{k=0}^{n} F_{k}=F_{n+2}-1$

Proof (by induction).
Basis Step. If $n=0$, then the statement is $\Sigma_{k=0}^{0} F_{k}=F_{0+2}-1$, which is the statement $F_{0}=F_{0+2}-1$, or $F_{0}=F_{2}-1$. Since $F_{0}=1$ and $F_{2}=2$, you can see that this is a true statement.
Inductive Step. Suppose that $\sum_{k=0}^{k} F_{k}=F_{k+2}-1$ for some natural number k. We want to show that $\Sigma_{k=0}^{k+1} F_{k}=F_{k+1+2}-1$. Begin with the equation $\Sigma_{k=0}^{k} F_{k}=F_{k+2}-1$, and add an F_{k+1} to both sides. Then you get the equation $\Sigma_{k=0}^{k+1} F_{k}=F_{k+2}+F_{k+1}-1$, Now use the fact that $F_{k+2}+F_{k+1}=F_{k+3}$, and we get $\Sigma_{k=0}^{k+1} F_{k}=F_{k+3}-1$. This proves the Theorem.
4. If n is a natural number, then $\sum_{k=0}^{n} F_{k}^{2}=F_{n} F_{n+1}$.

Proof (by induction).
Basis Step. If $n=0$, then the statement is $\sum_{k=0}^{0} F_{k}^{2}=F_{0} F_{0+1}$, which is the statement $F_{0}^{2}=F_{0} F_{1}$. Since $F_{0}=1=F_{1}$, this is just the true statement $1^{2}=(1)(1)$.
Inductive Step. Suppose that $\sum_{k=0}^{k} F_{k}^{2}=F_{k} F_{k+1}$ for some natural number k.
We want to show that $\Sigma_{k=0}^{k+1} F_{k}{ }^{2}=F_{k+1} F_{k+1+1}$.
Begin with the equation $\sum_{k=0}^{k} F_{k}^{2}=F_{k} F_{k+1}$, and add an $F_{k+1}{ }^{2}$ to both sides.
Then you get the equation $\Sigma_{k=0}^{k+1} F_{k}{ }^{2}=F_{k} F_{k+1}+F_{k+1}{ }^{2}$.
Factoring, we get $\sum_{k=0}^{k+1} F_{k}^{2}=F_{k+1}\left(F_{k}+F_{k+1}\right)$.
Now use the fact that $F_{k}+F_{k+1}=F_{k+2}$, and we get $\Sigma_{k=0}^{k+1} F_{k}^{2}=F_{k+1} F_{k+2}$.
This shows $\Sigma_{k=0}^{k+1} F_{k}{ }^{2}=F_{k+1} F_{k+1+1}$ so the theorem is proved.

