Name: \qquad R. Hammack

Score: \qquad

1. Consider the matrix, $A=\left[\begin{array}{cccc}1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1\end{array}\right]$.
(a) Find a basis for $\operatorname{Col}(A)$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{1}-2 R_{2} \\
R_{3}-R_{2} \\
R_{4}-R_{2} \\
\longrightarrow
\end{array}\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
\\
R_{2} \leftrightarrow 2 R_{3}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

From this, you can see that it is the first, second and fourth column of A that forms a basis for the column space. ANSWER: $\mathscr{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
(b) Find a basis for $\operatorname{Null}(A)^{\perp}$.

Since $\operatorname{Null}(A)^{\perp}=\operatorname{Row}(A)$, it follows from the above work that the answer is $\mathscr{B}=\left\{\left[\begin{array}{llll}1 & 0 & 3 & 0\end{array}\right],\left[\begin{array}{llll}1 & 0 & 2 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]\right\}$.
2. Suppose linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{r}2 \\ -2\end{array}\right]$ and $T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]$.

Find the standard matrix for T.
Note $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=T\left[\begin{array}{l}1 \\ 1\end{array}\right]-T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]-\left[\begin{array}{r}2 \\ -2\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]$.
Then $[T]=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{rr}2 & 3 \\ -2 & 3\end{array}\right]$.
3. Suppose A is a square matrix with eigenvalue λ. Prove that λ^{2} is an eigenvalue of A^{2}

Proof. Suppose A has eigenvalue λ, so there is a vector \mathbf{x} for which $A \mathbf{x}=\lambda \mathbf{x}$. Then:

$$
\begin{array}{ll}
A A \mathbf{x}=A(\lambda \mathbf{x}) & (\text { multiply both sides by } A) \\
A^{2} \mathbf{x}=\lambda A \mathbf{x} & \text { (properties of matrix multiplication) } \\
A^{2} \mathbf{x}=\lambda \lambda \mathbf{x} & (A \mathbf{x}=\lambda \mathbf{x}) \\
A^{2} \mathbf{x}=\lambda^{2} \mathbf{x} & \text { (rewite) }
\end{array}
$$

This last equation means λ^{2} is an eigenvalue of A^{2}
4. Consider the orthogonal basis $\mathscr{B}=\left\{\left[\begin{array}{r}2 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$ of \mathbb{R}^{2}. Find $[\mathbf{v}]_{\mathscr{B}}$, if $\mathbf{v}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.

$$
[\mathbf{v}]_{\mathscr{B}}=\left[\begin{array}{l}
{\left[\begin{array}{r}
2 \\
-3
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
5
\end{array}\right]} \\
\frac{\left[\begin{array}{r}
2 \\
-3
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-3
\end{array}\right]}{\left[\begin{array}{l}
3 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
5
\end{array}\right]}\left[\begin{array}{l}
3 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{13} \\
\frac{22}{13}
\end{array}\right]
$$

5. This problem concerns the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$.
(a) Find the eigenvalues for A.

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 0 \\
2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2} . \text { It follows that the only eigenvalue is } \lambda=1
$$

(b) Find the eigenspaces for A.

$$
E_{1}=\operatorname{Null}(A-I)=\operatorname{Null}\left(\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

(c) Is A diagonalizable? Explain.

No. Parts (a) and (b) above show that \mathbb{R}^{2} does not have a basis of eigenvectors of A, so A is not diagonalizable.
6. In this problem, A is a 4×4 matrix satisfying $P^{-1} A P=D$,
where $P=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2\end{array}\right]$ and $D=\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(a) List the eigenvalues of A, and for each eigenvalue, give a basis for its eigenspace.
(Note: This can be done without computations.)
The eigenvalues, read off of D are 5,2 and 1 . The eigenspaces, read off of P, are as follows.

$$
E_{5}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right), \quad E_{2}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]\right), \quad E_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]\right)
$$

(b) $A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=5\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5 \\ 5 \\ 5\end{array}\right]$
(c) Find the determinant of A. Explain your work.

$$
\begin{aligned}
& P^{-1} A P=D \\
& \operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(D) \\
& \operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P)=20 \\
& \frac{1}{\operatorname{det}(P)} \operatorname{det}(A) \operatorname{det}(P)=20 \\
& \operatorname{det}(A)=20
\end{aligned}
$$

(d) Is A invertible? Why or why not?

Yes, because its determinant is not 0 .

