Name: \qquad R. Hammack

Score: \qquad

1. (30 points) For this problem, $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 4\end{array}\right], \quad B=\left[\begin{array}{rr}-3 & 2 \\ 3 & -2\end{array}\right], \mathbf{u}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$.
Perform the indicated operations, if possible. (If it is not possible, say why.)
(a) $\quad \mathbf{u}-\frac{2}{3} \mathbf{v}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]-\frac{2}{3}\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]+\left[\begin{array}{r}-4 / 3 \\ 2 / 3 \\ -2\end{array}\right]=\left[\begin{array}{r}-1 / 3 \\ 5 / 3 \\ -3\end{array}\right]$
(b) $\mathbf{u} \cdot \mathbf{v}=2-1-3=-2$
(c) $\quad\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{1+1+1}=\sqrt{3}$
(d) $\quad B A=\left[\begin{array}{rr}-3 & 2 \\ 3 & -2\end{array}\right]\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 4\end{array}\right]=\left[\begin{array}{rrr}-4 & 1 & 11 \\ 4 & -1 & -4\end{array}\right]$
(e) $\quad A A^{T}=\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 4\end{array}\right]\left[\begin{array}{rr}2 & 1 \\ 3 & 5 \\ -1 & 4\end{array}\right]=\left[\begin{array}{ll}14 & 13 \\ 13 & 42\end{array}\right]$
(f) $\quad B^{-1}=\quad$ (Matrix B is not invertible because $a d-b c=0$.)
2. (10 points) Suppose C, D and X are invertible matrices. Solve the equation $C(D+$ $\left.X^{-1}\right)=D C+C D$ for X. Simplify your answer as much as possible.
$C\left(D+X^{-1}\right)=D C+C D$
$C D+C X^{-1}=D C+C D$
$C X^{-1}=D C+C D-C D$
$C X^{-1}=D C$
$C^{-1} C X^{-1}=C^{-1} D C$
$X^{-1}=C^{-1} D C$
$\left(X^{-1}\right)^{-1}=\left(C^{-1} D C\right)^{-1}$
$X=C^{-1} D^{-1}\left(C^{-1}\right)^{-1}$
$X=C^{-1} D^{-1} C$
3. (15 points) Solve the following system.

$$
\begin{array}{r}
2 x+y+6 z=0 \\
x+3 y+3 z=0 \\
x-2 y+3 z=0 \\
2 x+6 y+6 z=0
\end{array}
$$

Setting up the augmented matrix and row-reducing, we get:

$$
\begin{aligned}
& {\left[\begin{array}{rrr|l}
2 & 1 & 6 & 0 \\
1 & 3 & 3 & 0 \\
1 & -2 & 3 & 0 \\
2 & 6 & 6 & 0
\end{array}\right] \xrightarrow{\longrightarrow}\left[R_{1}\left[\begin{array}{rrr|r}
1 & 3 & 3 & 0 \\
2 & 1 & 6 & 0 \\
1 & -2 & 3 & 0 \\
2 & 6 & 6 & 0
\end{array}\right] \begin{array}{c}
R_{2}-2 R_{1} \\
R_{3}-R_{1} \\
R_{4}-2 R_{1} \\
\longrightarrow
\end{array}\left[\begin{array}{rrr|r}
1 & 3 & 3 & 0 \\
0 & -5 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right.} \\
& \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{rrr|r}
1 & 3 & 3 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-\frac{1}{5} R_{2}}\left[\begin{array}{lll|l}
1 & 3 & 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{1}-3 R_{2}\left[\begin{array}{lll|l}
1 & 0 & 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

 The solutions of this system are $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=z\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right], z \in \mathbb{R}$.
4. (15 points) Find the distance between the parallel planes $x+y-2 z=1$ and $-2 x-$ $2 y+4 z=2$ in \mathbb{R}^{3}. Please explain your reasoning. Illustrate it with a picture if necessary.

The tip of $\mathbf{p}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is on the first plane and the tip of $\mathbf{q}=\left[\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right]$ is on the second plane, as illustrated. The vector $\mathbf{n}=\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right]$ is normal to both planes. From the diagram, the distance between the planes is the length of the projection of $\mathbf{r}=\mathbf{q}-\mathbf{p}$ $=\left[\begin{array}{r}-2 \\ 0 \\ 0\end{array}\right]$ onto \mathbf{n}. That is, the distance is $\left\|\operatorname{proj}_{\mathbf{n}}(\mathbf{q}-\mathbf{p})\right\|=\left\|\frac{\mathbf{r} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}\right\|=\left\|\frac{-2}{6} \mathbf{n}\right\|=$ $\frac{1}{3}\|\mathbf{n}\|=\frac{\sqrt{6}}{3}$.
5. (15 points) Is the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ invertible? If so, find its inverse. If not, say why.

Using the Gauss-Jordan method,
$\left[\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right] \stackrel{R_{2}-R_{1}}{\longrightarrow}\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right] \quad \underset{ }{R_{2} \leftrightarrow R_{3}}$
$\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 & 1 & 0\end{array}\right] \xrightarrow{R_{3}-2 R_{2}}\left[\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & -2 & -1 & 1 & -2\end{array}\right] \xrightarrow{-\frac{1}{2} R_{3}}$
$\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 / 2 & -1 / 2 & 1\end{array}\right] \xrightarrow{\substack{R_{1}-R_{3} \\ R_{2}-R_{3}}}\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 1 / 2 & 1 / 2 & -1 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 & 1 / 2 & -1 / 2 & 1\end{array}\right]$
Therefore the matrix is invertible, and its inverse is $\left[\begin{array}{rrr}1 / 2 & 1 / 2 & -1 \\ -1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 1\end{array}\right]$
6. (15 points) This problem concerns the three vectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in \mathbb{R}^{3}.
(a) Are these vectors linearly independent or linearly dependent? Explain.
(Suggestion: Compare these vectors to the matrix in Problem 5.)
To answer this question, it is necessary to investigate the solutions of the equation
$x\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+y\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]+z\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
In matrix form, this is $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. However, the matrix on the left is invertible, by Problem 5. Multiplying both sides of the above equation by the inverse of the matrix gives a unique solution $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Since we get only the trivial solution, the vectors are linearly independent.
(b) Is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ in the span of these vectors? Explain.

Yes. Note $1\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+0\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]+0\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, so the vector in question is a linear combination of the three given vectors, so it is in their span.

