___________________________________________________________
Calculus II Quiz
#10 May
4, 2004
Name_________________ R. Hammack Score
______
___________________________________________________________
Decide if the following series converge or diverge. Use any applicable test.
(1)
The terms are positive, and ,
so it converges by comparison with the
convergent p-series
.
(2)
This is an alternating series that meets the conditions of the Alternating Series
Test, so it CONVERGES.
(3)
Let's try the ratio test for absolute convergence.
Since ,
the original series converges absolutely, so it CONVERGES
(4)
Let's test for absolute convergence, so we look at the positive term series .
Now, ,
so it converges by comparison with the convergent p-series
.
Therefore the original series is absolutely convergent, so it CONVERGES.