__________________________________________________________________________________________________
Calculus I                                                                  Quiz # 5                                  October 13, 2003

Name____________________                           R.  Hammack                              Score ______
__________________________________________________________________________________________________

(1) In this problem,  f(x) = 2/x.

(a) Use the limit definition of the derivative to find f ' (x).

  f ' (x) = Underscript[lim , wx] (f(w) - f(x))/(w - x) = Underscript[lim , wx] (2/w - 2/x)/(w - x) = Underscript[lim , wx] (2x - 2w)/(w x)/(w - x) =
  
  Underscript[lim , wx] (-2 (-x + w))/(w x) 1/(w - x) = Underscript[lim , wx] -2/(w x) = -2/(x x) = -2/x^2


(b) Using your answer from part a above, find the slope of the tangent to the graph of y = f(x) at the point (2, 1).  (You should not need to use a limit to do this part.)

slope = f '(2) = -2/2^2 = -1/2


(2)  The graph of a function  f (x)  is sketched below. Using the same coordinate axis,  sketch a graph of the derivative f '(x).

Using the fact that f '(x) = slope of tangent to y=f(x) at (x,f(x)), we get the following graph of y = f '(x), sketched in bold.


[Graphics:HTMLFiles/quiz5sol_8.gif]