MATH 602 Midterm

R. Hammack

1. Determine all the ideals in the ring $\mathbb{Z}[x]/(2, x^3 + 1)$.

First we are going to show that $\mathbb{Z}[x]/(2, x^3 + 1) \cong \mathbb{F}_2[x]/(x^3 + 1)$, where \mathbb{F}_2 is the field $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. (This will simplify the discussion because $\mathbb{F}_2[x]$ is a PID, whereas $\mathbb{Z}[x]$ is not.) Consider the following ring homomorphisms.

$$\mathbb{Z}[x] \xrightarrow{\mu} \mathbb{F}_{2}[x] \xrightarrow{\eta} \mathbb{F}_{2}[x]/(x^{3}+1) \\
\sum_{i=1}^{n} a_{i}x^{i} \longmapsto \sum_{i=1}^{n} \overline{a_{i}}x^{i} \longmapsto \left(\sum_{i=1}^{n} \overline{a_{i}}x^{i}\right) + (x^{3}+1)$$

(Here $\overline{a_i}$ is $a_i \mod 2$.) Let $\varphi : \mathbb{Z}[x] \to \mathbb{F}_2[x]/(x^3+1)$ be the composition $\varphi = \eta \circ \mu$. Notice that ker $\varphi = (2, x^3-1)$, as follows: Any element in the ideal $(2, x^3 + 1)$ has form $2g(x) + (x^3 + 1)h(x)$ for some $g(x), h(x) \in \mathbb{Z}[x]$, and it is immediate that $\varphi (2g(x) + (x^3 + 1)h(x)) = 0$; Therefore $(2, x^3 + 1) \subseteq \ker \varphi$. Conversely, ker $\eta = (x^3 + 1) \subseteq \mathbb{F}_2[x]$, so μ must send ker φ into the ideal $(x^3 + 1) \subseteq \mathbb{F}_2[x]$. Now, μ just reduces the coefficients of a polynomial modulo 2, so if $f(x) \in \ker \varphi$, then after the coefficients of f(x) are reduced modulo 2, the resulting polynomial is a multiple of $x^3 + 1$. Separating the terms that reduce to 0 into a polynomial g(x), we see that $f(x) = g(x) + (x^3 - 1)h(x)$, where the coefficients of g(x) are even. Therefore $f(x) = 2g'(x) + (x^3 + 1)h(x)$, hence $f(x) \in (2, x^3 + 1)$. Therefore ker $\varphi \subseteq (2, x^3 + 1)$.

The above has shown that ker $\varphi = (2, x^3 + 1)$, so by the First Isomorphism Theorem we have $\mathbb{Z}[x]/(2, x^3 + 1) \cong \mathbb{F}_2[x]/(x^3 + 1)$, as desired. The problem now is to describe all ideals of $\mathbb{F}_2[x]/(x^3 + 1)$. By the Fourth Isomorphism Theorem, such ideas are in one-to-one correspondence with the ideals in $\mathbb{F}_2[x]$ that contain $(x^3 + 1)$. Let us turn our attention to those ideals.

Notice that $x^3 + 1 = (x - 1)(x^2 + x + 1)$ is a factoring of $x^3 + 1$ into irreducibles in $\mathbb{F}_2[x]$. It follows that $(x^3 + 1) \subset (x - 1)$ and $(x^3 + 1) \subset (x^2 + x + 1)$. What other ideals contain $(x^3 + 1)$? Since \mathbb{F}_2 is a field, $\mathbb{F}_2[x]$ is a PID, so we are looking for ideals (f(x)) for which $(x^3 + 1) \subseteq (f(x))$. This means $x^3 + 1 = g(x)f(x)$. Since $\mathbb{F}_2[x]$ is a UFD (it is a PID) and $x^3 + 1 = (x - 1)(x^2 + x + 1)$ is a prime factoring, it follows that the only choices for f(x) (up to multiplication by a unit) are f(x) = 1, f(x) = x - 1, $f(x) = x^2 + x + 1$, and $f(x) = (x - 1)(x^2 + x + 1)$. Thus we have only four ideals of $\mathbb{F}_2[x]/(x^3 + 1)$, and only two of them are proper and nontrivial:

$$\begin{array}{ll} (1)/(x^3+1) = \mathbb{F}_2[x]/(x^3+1) & (x+1)/(x^3+1) \\ ((x+1)(x^2+x+1))/(x^3+1) = 0 & (x^2+x+1)/(x^3+1) \end{array}$$

Transferring this back to $\mathbb{Z}[x]/(2, x^3 + 1)$, we see that it has only two proper nontrivial ideals:

$$(2, x+1)/(2, x^3+1)$$
 and $(2, x^2+x+1)/(2, x^3+1)$.

2. Construct a field with 9 elements.

Begin with the field $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}$, which has three elements. Consider the polynomial ring $\mathbb{F}_3[x]$.

The polynomial $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$ is irreducible because if it factored into polynomials of lower degree, then the factors would have to be linear, and hence f(x) would have a root in \mathbb{F}_3 . However, there are no roots, as f(0) = 1, f(1) = 2 and f(2) = 2.

Since $x^2 + 1$ is irreducible, the ideal $(x^2 + 1)$ is maximal in $\mathbb{F}_3[x]$, so $\mathbb{F}_3[x]/(x^2 + 1)$ is a field.

In this field, $\overline{x^2 + 1} = \overline{0}$, so $\overline{x^2} = \overline{-1} = \overline{2}$. We will henceforward drop the bars and write this as $x^2 = 2$. Consequently any even power of $x \in \mathbb{F}_3[x]/(x^2+1)$ is constant in \mathbb{F}_3 , and any odd power of x is a constant multiple of x. Therefore, given any element g(x) of $\mathbb{F}_3[x]/(x^2+1)$, we may assume that g(x) = ax + b. There are nine such elements:

 $0, \quad 1, \quad 2, \quad x, \quad 2x, \quad 1+x, \quad 1+2x, \quad 2+x, \quad 2+2x$

These elements are all distinct, because the difference of any two is a linear, yet the only linear element of the ideal $(x^2 + 1)$ is zero. Therefore if the difference of two of them belongs to $(x^2 + 1)$, the two are equal.

We therefore have a field with nine elements. Since $x^2 = 2$, multiplication and addition work as follows:

$$\begin{aligned} (a+bx)+(a'+b'x) &= (a+a') + (b+b')x, \\ (a+bx)(a'+b'x) &= (aa'+2bb') + (ab'+ba')x, \end{aligned}$$

where, of course, $a, a', b, b' \in \mathbb{F}_3$, so the arithmetic is done modulo 3.

3. Let z be a fixed element in the center of a ring R with 1, and let M be a (left) R-module. Prove: The map $\mu_z : M \to M$ given by $\mu_z(m) = zm$ is an R-module homomorphism. Prove: If R is commutative, then the map $\varphi : R \to \operatorname{End}_R(M)$ given by $\varphi(r) = \mu_r$ is a ring homomorphism.

Proof. For the first statement, note that given any $m, n \in M$ we have

$$\mu_z(m+n) = z(m+n) = zm + zn = \mu_z(m) + \mu_z(n).$$

Also, for $r \in R$ and $m \in M$ it follows that $\mu_z(rm) = zrm = rzm = r\mu_z(m)$. (Notice that here we needed z in the center, so that it commutes with r.) We have now verified that μ_z is an R-module homomorphism.

Next, suppose R is commutative. Then it is its own center, and, by the above, $\mu_r : M \to M$ is an R-module homomorphism for any $r \in R$. In other words, $\mu_r \in \operatorname{End}_R(M)$ for any r. Therefore we have a well-defined map $\varphi : R \to \operatorname{End}_R(M)$ given by $\varphi(r) = \mu_r$. We need to confirm that this is a ring homomorphism.

First we will show that $\varphi(r+s) = \varphi(r) + \varphi(s)$, that is, we will show that $\mu_{r+s} = \mu_r + \mu_s$. Simply note that $\mu_{r+s}(x) = (r+s)x = rx + sx = \mu_r(x) + \mu_s(x)$. Next we confirm $\varphi(rs) = \varphi(r) \circ \varphi(s)$, which amounts to showing $\mu_{rs} = \mu_r \circ \mu_s$. Simply note that $\mu_{rs}(x) = (rs)x = r(sx) = r\mu_s(x) = \mu_r(\mu_s(x)) = (\mu_r \circ \mu_s)(x)$.

4. Prove that if M is a finitely generated R-module that is generated with n elements, then every quotient of M is finitely generated by n or fewer elements.

Proof. Suppose M is generated by elements m_1, m_2, \ldots, m_n . Then given any $m \in M$, it follows that $m = \sum_{i=1}^n r_i m_i$ for appropriate elements $r_i \in R$. Now let $N \subseteq M$ be a submodule, and consider the quotient M/N. Given any element m + N of this quotient, we have

$$m+N = \left(\sum_{i=1}^{n} r_i m_i\right) + M$$
$$= \sum_{i=1}^{n} (r_i m_i + M)$$
$$= \sum_{i=1}^{n} r_i (m_i + M).$$

This means that M/N is generated by the *n* elements $m_1 + N$, $m_2 + N$, ..., $m_n + N$. Thus M/N can be generated by *n* or fewer elements.

5. Suppose V is a finite dimensional vector space and $\varphi: V \to V$ is a linear transformation. Prove that there is an integer m for which $\varphi^m(V) \cap \ker \varphi^m = 0$.

Proof. Observe that for any n we have the following chain of subspaces:

$$\{0\} \subseteq \varphi^{n+1}(V) \subseteq \varphi^n(V) \subseteq \varphi^{n-1}(V) \subseteq \varphi^{n-2}(V) \subseteq \dots \subseteq \varphi^2(V) \subseteq \varphi(V).$$

Therefore

$$0 \le \dim \varphi^{n+1}(V) \le \dim \varphi^n(V) \le \dim \varphi^{n-1}(V) \le \dots \le \dim \varphi^2(V) \le \dim \varphi(V)$$

Since V is finite dimensional, it follows that $\dim \varphi^{n+1}(V) = \dim \varphi^n(V)$ for some sufficiently large n. Combining this with $\varphi^{n+1}(V) \subseteq \varphi^n(V)$, it follows that $\varphi^{n+1}(V) = \varphi^n(V)$, that is, $\varphi(\varphi^n(V)) = \varphi^n(V)$.

Thus $\varphi : \varphi^n(V) \to \varphi^n(V)$ is a surjective linear map between spaces of the same dimension, so it (i.e. the restriction of φ to $\varphi^n(V)$) is an isomorphism. Composing it with itself *n* times gives an isomorphism $\varphi^n : \varphi^n(V) \to \varphi^n(V)$.

Take $x \in \varphi^n(V) \cap \ker \varphi^n$. Then $\varphi^n(x) = 0$ because $x \in \ker \varphi^n$. But also $\varphi^n : \varphi^n(V) \to \varphi^n(V)$ is an isomorphism, so $\varphi^n(x) = 0$ (from the previous sentence) implies x = 0. This proves $\varphi^n(V) \cap \ker \varphi^n = 0$.