
Abstract Algebra II MATH 602 Midterm March 7, 2012

Name: R. Hammack Score:

1. Determine all the ideals in the ring Z[x]/(2, x3 + 1).

First we are going to show that Z[x]/(2, x3 + 1) ∼= F2[x]/(x3 + 1), where F2 is the field F2 = Z/2Z. (This will
simplify the discussion because F2[x] is a PID, whereas Z[x] is not.) Consider the following ring homomorphisms.

Z[x]
µ−→ F2[x]

η−→ F2[x]/(x3 + 1)
n∑
i=1

aix
i 7−→

n∑
i=1

aix
i 7−→

(
n∑
i=1

aix
i

)
+ (x3 + 1)

(Here ai is ai modulo 2.) Let ϕ : Z[x]→ F2[x]/(x3 +1) be the composition ϕ = η◦µ. Notice that kerϕ = (2, x3−1),
as follows: Any element in the ideal (2, x3 + 1) has form 2g(x) + (x3 + 1)h(x) for some g(x), h(x) ∈ Z[x], and it is
immediate that ϕ

(
2g(x) + (x3 + 1)h(x)

)
= 0; Therefore (2, x3 + 1) ⊆ kerϕ. Conversely, ker η = (x3 + 1) ⊆ F2[x],

so µ must send kerϕ into the ideal (x3 + 1) ⊆ F2[x]. Now, µ just reduces the coefficients of a polynomial modulo 2,
so if f(x) ∈ kerϕ, then after the coefficients of f(x) are reduced modulo 2, the resulting polynomial is a multiple
of x3 + 1. Separating the terms that reduce to 0 into a polynomial g(x), we see that f(x) = g(x) + (x3 − 1)h(x),
where the coefficients of g(x) are even. Therefore f(x) = 2g′(x) + (x3 + 1)h(x), hence f(x) ∈ (2, x3 + 1). Therefore
kerϕ ⊆ (2, x3 + 1).

The above has shown that kerϕ = (2, x3 + 1), so by the First Isomorphism Theorem we have Z[x]/(2, x3 + 1) ∼=
F2[x]/(x3 + 1), as desired. The problem now is to describe all ideals of F2[x]/(x3 + 1). By the Fourth Isomorphism
Theorem, such ideas are in one-to-one correspondence with the ideals in F2[x] that contain (x3 + 1). Let us turn
our attention to those ideals.

Notice that x3 + 1 = (x − 1)(x2 + x + 1) is a factoring of x3 + 1 into irreducibles in F2[x]. It follows that
(x3 + 1) ⊂ (x− 1) and (x3 + 1) ⊂ (x2 + x+ 1). What other ideals contain (x3 + 1)? Since F2 is a field, F2[x] is a
PID, so we are looking for ideals (f(x)) for which (x3 + 1) ⊆ (f(x)). This means x3 + 1 = g(x)f(x). Since F2[x] is
a UFD (it is a PID) and x3 + 1 = (x− 1)(x2 + x+ 1) is a prime factoring, it follows that the only choices for f(x)
(up to multiplication by a unit) are f(x) = 1, f(x) = x − 1, f(x) = x2 + x + 1, and f(x) = (x − 1)(x2 + x + 1).
Thus we have only four ideals of F2[x]/(x3 + 1), and only two of them are proper and nontrivial:

(1)/(x3 + 1) = F2[x]/(x3 + 1) (x+ 1)/(x3 + 1)
((x+ 1)(x2 + x+ 1))/(x3 + 1) = 0 (x2 + x+ 1)/(x3 + 1)

Transferring this back to Z[x]/(2, x3 + 1), we see that it has only two proper nontrivial ideals:

(2, x+ 1)/(2, x3 + 1) and (2, x2 + x+ 1)/(2, x3 + 1).

2. Construct a field with 9 elements.

Begin with the field F3 = Z/3Z = {0, 1, 2}, which has three elements. Consider the polynomial ring F3[x].

The polynomial f(x) = x2 +1 ∈ F3[x] is irreducible because if it factored into polynomials of lower degree, then the
factors would have to be linear, and hence f(x) would have a root in F3. However, there are no roots, as f(0) = 1,
f(1) = 2 and f(2) = 2.

Since x2 + 1 is irreducible, the ideal (x2 + 1) is maximal in F3[x], so F3[x]/(x2 + 1) is a field.

In this field, x2 + 1 = 0, so x2 = −1 = 2. We will henceforward drop the bars and write this as x2 = 2. Consequently
any even power of x ∈ F3[x]/(x2+1) is constant in F3, and any odd power of x is a constant multiple of x. Therefore,
given any element g(x) of F3[x]/(x2 + 1), we may assume that g(x) = ax+ b. There are nine such elements:

0, 1, 2, x, 2x, 1 + x, 1 + 2x, 2 + x, 2 + 2x

These elements are all distinct, because the difference of any two is a linear, yet the only linear element of the ideal
(x2 + 1) is zero. Therefore if the difference of two of them belongs to (x2 + 1), the two are equal.

We therefore have a field with nine elements. Since x2 = 2, multiplication and addition work as follows:

(a+ bx) + (a′ + b′x) = (a+ a′) + (b+ b′)x,
(a+ bx)(a′ + b′x) = (aa′ + 2bb′) + (ab′ + ba′)x,

where, of course, a, a′, b, b′ ∈ F3, so the arithmetic is done modulo 3.



3. Let z be a fixed element in the center of a ring R with 1, and let M be a (left) R-module.
Prove: The map µz : M →M given by µz(m) = zm is an R-module homomorphism.
Prove: If R is commutative, then the map ϕ : R→ EndR(M) given by ϕ(r) = µr is a ring homomorphism.

Proof. For the first statement, note that given any m,n ∈M we have

µz(m+ n) = z(m+ n) = zm+ zn = µz(m) + µz(n).

Also, for r ∈ R and m ∈ M it follows that µz(rm) = zrm = rzm = rµz(m). (Notice that here we needed z in the
center, so that it commutes with r.) We have now verified that µz is an R-module homomorphism.

Next, suppose R is commutative. Then it is its own center, and, by the above, µr : M → M is an R-module
homomorphism for any r ∈ R. In other words, µr ∈ EndR(M) for any r. Therefore we have a well-defined map
ϕ : R→ EndR(M) given by ϕ(r) = µr. We need to confirm that this is a ring homomorphism.

First we will show that ϕ(r + s) = ϕ(r) + ϕ(s), that is, we will show that µr+s = µr + µs. Simply note that
µr+s(x) = (r + s)x = rx + sx = µr(x) + µs(x). Next we confirm ϕ(rs) = ϕ(r) ◦ ϕ(s), which amounts to showing
µrs = µr ◦ µs. Simply note that µrs(x) = (rs)x = r(sx) = rµs(x) = µr(µs(x)) = (µr ◦ µs)(x).

4. Prove that if M is a finitely generated R-module that is generated with n elements, then every quotient of M is
finitely generated by n or fewer elements.

Proof. Suppose M is generated by elements m1,m2, . . . ,mn. Then given any m ∈ M , it follows that m =∑n
i=1 rimi for appropriate elements ri ∈ R. Now let N ⊆ M be a submodule, and consider the quotient M/N .

Given any element m+N of this quotient, we have

m+N =

(
n∑
i=1

rimi

)
+M

=
n∑
i=1

(rimi +M)

=
n∑
i=1

ri(mi +M).

This means that M/N is generated by the n elements m1 +N, m2 +N, . . . , mn+N . Thus M/N can be generated
by n or fewer elements.

5. Suppose V is a finite dimensional vector space and ϕ : V → V is a linear transformation.
Prove that there is an integer m for which ϕm(V ) ∩ kerϕm = 0.

Proof. Observe that for any n we have the following chain of subspaces:

{0} ⊆ ϕn+1(V ) ⊆ ϕn(V ) ⊆ ϕn−1(V ) ⊆ ϕn−2(V ) ⊆ · · · ⊆ ϕ2(V ) ⊆ ϕ(V ).

Therefore
0 ≤ dimϕn+1(V ) ≤ dimϕn(V ) ≤ dimϕn−1(V ) ≤ · · · ≤ dimϕ2(V ) ≤ dimϕ(V ).

Since V is finite dimensional, it follows that dimϕn+1(V ) = dimϕn(V ) for some sufficiently large n. Combining
this with ϕn+1(V ) ⊆ ϕn(V ), it follows that ϕn+1(V ) = ϕn(V ), that is, ϕ(ϕn(V )) = ϕn(V ).

Thus ϕ : ϕn(V )→ ϕn(V ) is a surjective linear map between spaces of the same dimension, so it (i.e. the restriction
of ϕ to ϕn(V )) is an isomorphism. Composing it with itself n times gives an isomorphism ϕn : ϕn(V )→ ϕn(V ).

Take x ∈ ϕn(V ) ∩ kerϕn. Then ϕn(x) = 0 because x ∈ kerϕn. But also ϕn : ϕn(V ) → ϕn(V ) is an isomorphism,
so ϕn(x) = 0 (from the previous sentence) implies x = 0. This proves ϕn(V ) ∩ kerϕn = 0.


