1. Determine all the ideals in the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.

First we are going to show that $\mathbb{Z}[x] /\left(2, x^{3}+1\right) \cong \mathbb{F}_{2}[x] /\left(x^{3}+1\right)$, where \mathbb{F}_{2} is the field $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$. (This will simplify the discussion because $\mathbb{F}_{2}[x]$ is a PID, whereas $\mathbb{Z}[x]$ is not.) Consider the following ring homomorphisms.

$$
\begin{array}{rllll}
\mathbb{Z}[x] & \xrightarrow{\mu} & \mathbb{F}_{2}[x] & \xrightarrow{\eta} & \mathbb{F}_{2}[x] /\left(x^{3}+1\right) \\
\sum_{i=1}^{n} a_{i} x^{i} & \longmapsto & \sum_{i=1}^{n} \overline{a_{i}} x^{i} & \longmapsto & \left(\sum_{i=1}^{n} \overline{a_{i}} x^{i}\right)+\left(x^{3}+1\right)
\end{array}
$$

(Here $\overline{a_{i}}$ is a_{i} modulo 2.) Let $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{F}_{2}[x] /\left(x^{3}+1\right)$ be the composition $\varphi=\eta \circ \mu$. Notice that $\operatorname{ker} \varphi=\left(2, x^{3}-1\right)$, as follows: Any element in the ideal $\left(2, x^{3}+1\right)$ has form $2 g(x)+\left(x^{3}+1\right) h(x)$ for some $g(x), h(x) \in \mathbb{Z}[x]$, and it is immediate that $\varphi\left(2 g(x)+\left(x^{3}+1\right) h(x)\right)=0$; Therefore $\left(2, x^{3}+1\right) \subseteq \operatorname{ker} \varphi$. Conversely, ker $\eta=\left(x^{3}+1\right) \subseteq \mathbb{F}_{2}[x]$, so μ must send ker φ into the ideal $\left(x^{3}+1\right) \subseteq \mathbb{F}_{2}[x]$. Now, μ just reduces the coefficients of a polynomial modulo 2 , so if $f(x) \in \operatorname{ker} \varphi$, then after the coefficients of $f(x)$ are reduced modulo 2 , the resulting polynomial is a multiple of $x^{3}+1$. Separating the terms that reduce to 0 into a polynomial $g(x)$, we see that $f(x)=g(x)+\left(x^{3}-1\right) h(x)$, where the coefficients of $g(x)$ are even. Therefore $f(x)=2 g^{\prime}(x)+\left(x^{3}+1\right) h(x)$, hence $f(x) \in\left(2, x^{3}+1\right)$. Therefore $\operatorname{ker} \varphi \subseteq\left(2, x^{3}+1\right)$.

The above has shown that $\operatorname{ker} \varphi=\left(2, x^{3}+1\right)$, so by the First Isomorphism Theorem we have $\mathbb{Z}[x] /\left(2, x^{3}+1\right) \cong$ $\mathbb{F}_{2}[x] /\left(x^{3}+1\right)$, as desired. The problem now is to describe all ideals of $\mathbb{F}_{2}[x] /\left(x^{3}+1\right)$. By the Fourth Isomorphism Theorem, such ideas are in one-to-one correspondence with the ideals in $\mathbb{F}_{2}[x]$ that contain $\left(x^{3}+1\right)$. Let us turn our attention to those ideals.

Notice that $x^{3}+1=(x-1)\left(x^{2}+x+1\right)$ is a factoring of $x^{3}+1$ into irreducibles in $\mathbb{F}_{2}[x]$. It follows that $\left(x^{3}+1\right) \subset(x-1)$ and $\left(x^{3}+1\right) \subset\left(x^{2}+x+1\right)$. What other ideals contain $\left(x^{3}+1\right)$? Since \mathbb{F}_{2} is a field, $\mathbb{F}_{2}[x]$ is a PID, so we are looking for ideals $(f(x))$ for which $\left(x^{3}+1\right) \subseteq(f(x))$. This means $x^{3}+1=g(x) f(x)$. Since $\mathbb{F}_{2}[x]$ is a UFD (it is a PID) and $x^{3}+1=(x-1)\left(x^{2}+x+1\right)$ is a prime factoring, it follows that the only choices for $f(x)$ (up to multiplication by a unit) are $f(x)=1, f(x)=x-1, f(x)=x^{2}+x+1$, and $f(x)=(x-1)\left(x^{2}+x+1\right)$. Thus we have only four ideals of $\mathbb{F}_{2}[x] /\left(x^{3}+1\right)$, and only two of them are proper and nontrivial:

$$
\begin{array}{lr}
(1) /\left(x^{3}+1\right)=\mathbb{F}_{2}[x] /\left(x^{3}+1\right) & (x+1) /\left(x^{3}+1\right) \\
\left((x+1)\left(x^{2}+x+1\right)\right) /\left(x^{3}+1\right)=0 & \left(x^{2}+x+1\right) /\left(x^{3}+1\right)
\end{array}
$$

Transferring this back to $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$, we see that it has only two proper nontrivial ideals:

$$
(2, x+1) /\left(2, x^{3}+1\right) \text { and }\left(2, x^{2}+x+1\right) /\left(2, x^{3}+1\right)
$$

2. Construct a field with 9 elements.

Begin with the field $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\}$, which has three elements. Consider the polynomial ring $\mathbb{F}_{3}[x]$.
The polynomial $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$ is irreducible because if it factored into polynomials of lower degree, then the factors would have to be linear, and hence $f(x)$ would have a root in \mathbb{F}_{3}. However, there are no roots, as $f(0)=1$, $f(1)=2$ and $f(2)=2$.

Since $x^{2}+1$ is irreducible, the ideal $\left(x^{2}+1\right)$ is maximal in $\mathbb{F}_{3}[x]$, so $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is a field.
In this field, $\overline{x^{2}+1}=\overline{0}$, so $\overline{x^{2}}=\overline{-1}=\overline{2}$. We will henceforward drop the bars and write this as $x^{2}=2$. Consequently any even power of $x \in \mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is constant in \mathbb{F}_{3}, and any odd power of x is a constant multiple of x. Therefore, given any element $g(x)$ of $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$, we may assume that $g(x)=a x+b$. There are nine such elements:

$$
0, \quad 1, \quad 2, \quad x, \quad 2 x, \quad 1+x, \quad 1+2 x, \quad 2+x, \quad 2+2 x
$$

These elements are all distinct, because the difference of any two is a linear, yet the only linear element of the ideal $\left(x^{2}+1\right)$ is zero. Therefore if the difference of two of them belongs to $\left(x^{2}+1\right)$, the two are equal.

We therefore have a field with nine elements. Since $x^{2}=2$, multiplication and addition work as follows:

$$
\begin{aligned}
(a+b x)+\left(a^{\prime}+b^{\prime} x\right) & =\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) x \\
(a+b x)\left(a^{\prime}+b^{\prime} x\right) & =\left(a a^{\prime}+2 b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) x
\end{aligned}
$$

where, of course, $a, a^{\prime}, b, b^{\prime} \in \mathbb{F}_{3}$, so the arithmetic is done modulo 3 .
3. Let z be a fixed element in the center of a ring R with 1 , and let M be a (left) R-module.

Prove: The map $\mu_{z}: M \rightarrow M$ given by $\mu_{z}(m)=z m$ is an R-module homomorphism.
Prove: If R is commutative, then the $\operatorname{map} \varphi: R \rightarrow \operatorname{End}_{R}(M)$ given by $\varphi(r)=\mu_{r}$ is a ring homomorphism.
Proof. For the first statement, note that given any $m, n \in M$ we have

$$
\mu_{z}(m+n)=z(m+n)=z m+z n=\mu_{z}(m)+\mu_{z}(n)
$$

Also, for $r \in R$ and $m \in M$ it follows that $\mu_{z}(r m)=z r m=r z m=r \mu_{z}(m)$. (Notice that here we needed z in the center, so that it commutes with r.) We have now verified that μ_{z} is an R-module homomorphism.

Next, suppose R is commutative. Then it is its own center, and, by the above, $\mu_{r}: M \rightarrow M$ is an R-module homomorphism for any $r \in R$. In other words, $\mu_{r} \in \operatorname{End}_{R}(M)$ for any r. Therefore we have a well-defined map $\varphi: R \rightarrow \operatorname{End}_{R}(M)$ given by $\varphi(r)=\mu_{r}$. We need to confirm that this is a ring homomorphism.

First we will show that $\varphi(r+s)=\varphi(r)+\varphi(s)$, that is, we will show that $\mu_{r+s}=\mu_{r}+\mu_{s}$. Simply note that $\mu_{r+s}(x)=(r+s) x=r x+s x=\mu_{r}(x)+\mu_{s}(x)$. Next we confirm $\varphi(r s)=\varphi(r) \circ \varphi(s)$, which amounts to showing $\mu_{r s}=\mu_{r} \circ \mu_{s}$. Simply note that $\mu_{r s}(x)=(r s) x=r(s x)=r \mu_{s}(x)=\mu_{r}\left(\mu_{s}(x)\right)=\left(\mu_{r} \circ \mu_{s}\right)(x)$.
4. Prove that if M is a finitely generated R-module that is generated with n elements, then every quotient of M is finitely generated by n or fewer elements.

Proof. Suppose M is generated by elements $m_{1}, m_{2}, \ldots, m_{n}$. Then given any $m \in M$, it follows that $m=$ $\sum_{i=1}^{n} r_{i} m_{i}$ for appropriate elements $r_{i} \in R$. Now let $N \subseteq M$ be a submodule, and consider the quotient M / N. Given any element $m+N$ of this quotient, we have

$$
\begin{aligned}
m+N & =\left(\sum_{i=1}^{n} r_{i} m_{i}\right)+M \\
& =\sum_{i=1}^{n}\left(r_{i} m_{i}+M\right) \\
& =\sum_{i=1}^{n} r_{i}\left(m_{i}+M\right)
\end{aligned}
$$

This means that M / N is generated by the n elements $m_{1}+N, m_{2}+N, \ldots, m_{n}+N$. Thus M / N can be generated by n or fewer elements.
5. Suppose V is a finite dimensional vector space and $\varphi: V \rightarrow V$ is a linear transformation.

Prove that there is an integer m for which $\varphi^{m}(V) \cap \operatorname{ker} \varphi^{m}=0$.
Proof. Observe that for any n we have the following chain of subspaces:

$$
\{0\} \subseteq \varphi^{n+1}(V) \subseteq \varphi^{n}(V) \subseteq \varphi^{n-1}(V) \subseteq \varphi^{n-2}(V) \subseteq \cdots \subseteq \varphi^{2}(V) \subseteq \varphi(V)
$$

Therefore

$$
0 \leq \operatorname{dim} \varphi^{n+1}(V) \leq \operatorname{dim} \varphi^{n}(V) \leq \operatorname{dim} \varphi^{n-1}(V) \leq \cdots \leq \operatorname{dim} \varphi^{2}(V) \leq \operatorname{dim} \varphi(V)
$$

Since V is finite dimensional, it follows that $\operatorname{dim} \varphi^{n+1}(V)=\operatorname{dim} \varphi^{n}(V)$ for some sufficiently large n. Combining this with $\varphi^{n+1}(V) \subseteq \varphi^{n}(V)$, it follows that $\varphi^{n+1}(V)=\varphi^{n}(V)$, that is, $\varphi\left(\varphi^{n}(V)\right)=\varphi^{n}(V)$.
Thus $\varphi: \varphi^{n}(V) \rightarrow \varphi^{n}(V)$ is a surjective linear map between spaces of the same dimension, so it (i.e. the restriction of φ to $\left.\varphi^{n}(V)\right)$ is an isomorphism. Composing it with itself n times gives an isomorphism $\varphi^{n}: \varphi^{n}(V) \rightarrow \varphi^{n}(V)$.

Take $x \in \varphi^{n}(V) \cap \operatorname{ker} \varphi^{n}$. Then $\varphi^{n}(x)=0$ because $x \in \operatorname{ker} \varphi^{n}$. But also $\varphi^{n}: \varphi^{n}(V) \rightarrow \varphi^{n}(V)$ is an isomorphism, so $\varphi^{n}(x)=0$ (from the previous sentence) implies $x=0$. This proves $\varphi^{n}(V) \cap \operatorname{ker} \varphi^{n}=0$.

