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1. Determine all the ideals in the ring Z[z]/(2, 2% + 1).

First we are going to show that Z[z]/(2,23 + 1) = Fa[z]/(2® + 1), where Fy is the field Fo = Z/27Z. (This will
simplify the discussion because Fo[z] is a PID, whereas Z[x] is not.) Consider the following ring homomorphisms.

Zlz] =  Faofe] o Fafu]/(e® +1)

zn:aiwi — zn:aﬁwi — (iaiw">+(w3+1)
=1 i=1 =1

(Here @; is a; modulo 2.) Let ¢ : Z[z] — Fa[x]/(2®+1) be the composition ¢ = nopu. Notice that ker p = (2,23 —1),
as follows: Any element in the ideal (2,22 + 1) has form 2g(z) + (2® + 1)h(z) for some g(z), h(z) € Z[z], and it is
immediate that ¢ (2g(z) + (2® 4+ 1)h(x)) = 0; Therefore (2,2 + 1) C ker¢. Conversely, kern = (2% + 1) C Fa[z],
so u must send ker ¢ into the ideal (z® + 1) C Fa[z]. Now, u just reduces the coefficients of a polynomial modulo 2,
so if f(x) € ker ¢, then after the coefficients of f(z) are reduced modulo 2, the resulting polynomial is a multiple
of 3 + 1. Separating the terms that reduce to 0 into a polynomial g(z), we see that f(z) = g(z) + (23 — 1)h(z),
where the coefficients of g(z) are even. Therefore f(z) = 2¢'(x) + (23 + 1)h(z), hence f(z) € (2,23 +1). Therefore
ker p C (2,2% +1).

The above has shown that ker p = (2,22 + 1), so by the First Isomorphism Theorem we have Z[z]/(2,2% + 1) &
Fa[z]/(2% 4 1), as desired. The problem now is to describe all ideals of F5[z]/(23 + 1). By the Fourth Isomorphism
Theorem, such ideas are in one-to-one correspondence with the ideals in Fo[z] that contain (z® + 1). Let us turn
our attention to those ideals.

Notice that 23 + 1 = (x — 1)(2? + o + 1) is a factoring of 2 + 1 into irreducibles in Fy[z]. It follows that
(x> +1) C (x—1) and (23 + 1) C (2% + 2 + 1). What other ideals contain (z® + 1)? Since F3 is a field, Fa[z] is a
PID, so we are looking for ideals (f(z)) for which (22 4+ 1) C (f(z)). This means x3 + 1 = g(z) f(z). Since Fa[z] is
a UFD (it is a PID) and 2% + 1 = (x — 1)(2? + 2 + 1) is a prime factoring, it follows that the only choices for f(z)
(up to multiplication by a unit) are f(x) = 1, f(z) =2 — 1, f(z) =2+ 2+ 1, and f(z) = (z — 1)(z? + 2 + 1).
Thus we have only four ideals of Fa[x]/(2® + 1), and only two of them are proper and nontrivial:

(1) /(z3 +1) = Falx] /(23 + 1) (x+1)/(z3+1)
(z+D)(@?+2+1)/(@3+1)=0 (22 +2+1)/(2*>+1)

Transferring this back to Z[z]/(2, 2% + 1), we see that it has only two proper nontrivial ideals:
(2,z+1)/(2,2° +1) and (2,2% + 2 +1)/(2,2° + 1).
2. Construct a field with 9 elements.
Begin with the field F3 = Z/3Z = {0,1, 2}, which has three elements. Consider the polynomial ring Fs[z].

The polynomial f(x) = 22+ 1 € F3[z] is irreducible because if it factored into polynomials of lower degree, then the
factors would have to be linear, and hence f(x) would have a root in F3. However, there are no roots, as f(0) =1,

f(1)=2and f(2) =2.

Since z2 + 1 is irreducible, the ideal (z? + 1) is maximal in Fs[z], so Fs[z]/(z% + 1) is a field.

In this field, 22 + 1 = 0, so 22 = —1 = 2. We will henceforward drop the bars and write this as 22 = 2. Consequently
any even power of x € F3[z]/(22+1) is constant in F3, and any odd power of z is a constant multiple of z. Therefore,
given any element g(z) of F3[z]/(z? + 1), we may assume that g(x) = ax + b. There are nine such elements:

0o, 1, 2, =z, 22, 14z, 142z, 24z, 2+2z

These elements are all distinct, because the difference of any two is a linear, yet the only linear element of the ideal
(2 4+ 1) is zero. Therefore if the difference of two of them belongs to (2 + 1), the two are equal.

We therefore have a field with nine elements. Since 22 = 2, multiplication and addition work as follows:

(a+bx)+ (' +bx) = (a+ad) + (b+b)z,
(a+bx)(a" +V'z) = (ad’ +2bV") + (ab' + ba')z,

where, of course, a,a’,b,b’ € F3, so the arithmetic is done modulo 3.



3. Let z be a fixed element in the center of a ring R with 1, and let M be a (left) R-module.
Prove: The map p, : M — M given by p.(m) = zm is an R-module homomorphism.
Prove: If R is commutative, then the map ¢ : R — Endg(M) given by ¢(r) = p, is a ring homomorphism.

Proof. For the first statement, note that given any m,n € M we have
w(m+n)=z(m+n)=z2m+ zn=p,(m)+ p,(n).

Also, for r € R and m € M it follows that p,(rm) = zrm = rzm = ru,(m). (Notice that here we needed z in the
center, so that it commutes with r.) We have now verified that p, is an R-module homomorphism.

Next, suppose R is commutative. Then it is its own center, and, by the above, u, : M — M is an R-module
homomorphism for any r € R. In other words, u, € Endgr(M) for any r. Therefore we have a well-defined map
¢ : R — Endg(M) given by ¢(r) = u,. We need to confirm that this is a ring homomorphism.

First we will show that o(r + s) = ¢(r) + ¢(s), that is, we will show that p,4+s = pr + ps. Simply note that
tris(x) = (r+ 8)x = rx + sx = pr(x) + ps(z). Next we confirm ¢(rs) = ¢(r) o ¢(s), which amounts to showing
trs = fbr O fs. Simply note that p,s(x) = (rs)x = r(sx) = rus(x) = pr(us(x)) = (r o ps) (). [ |

4. Prove that if M is a finitely generated R-module that is generated with n elements, then every quotient of M is
finitely generated by n or fewer elements.

Proof. Suppose M is generated by elements mi,ms,...,m,. Then given any m € M, it follows that m =
>, rim; for appropriate elements r; € R. Now let N C M be a submodule, and consider the quotient M/N.
Given any element m + N of this quotient, we have

n
m+N = (Zrﬂnl) + M
i=1
= Z(nmi + M)
i=1
i=1
This means that M /N is generated by the n elements my + N, ma+ N, ..., m, +N. Thus M /N can be generated
by n or fewer elements. ]

5. Suppose V is a finite dimensional vector space and ¢ : V' — V is a linear transformation.
Prove that there is an integer m for which ¢™ (V) Nker o™ = 0.

Proof. Observe that for any n we have the following chain of subspaces:

{0} S V) S (V) C " 1 (V) C " 2(V) S C*(V) C (V).

Therefore
0 < dim "™ (V) < dimp"(V) < dim " (V) < - < dim (V) < dim (V).

Since V is finite dimensional, it follows that dim " ™1(V) = dim " (V) for some sufficiently large n. Combining
this with " +1(V) C p™(V), it follows that " t1(V) = " (V), that is, o(p"(V)) = ¢"(V).

Thus ¢ : o"(V) — ¢™(V) is a surjective linear map between spaces of the same dimension, so it (i.e. the restriction
of ¢ to ™ (V)) is an isomorphism. Composing it with itself n times gives an isomorphism ™ : (V) — ¢™(V).

Take z € ¢"(V) Nker¢™. Then ¢"(x) = 0 because x € ker ™. But also ¢™ : ¢"(V) — ¢™(V) is an isomorphism,
50 ¢"(x) = 0 (from the previous sentence) implies = 0. This proves ¢™ (V) Nker o™ = 0. |



