\qquad

1. Determine all the ideals in the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.
2. Construct a field with 9 elements.
3. Let z be a fixed element in the center of a ring R with 1 , and let M be a (left) R-module.

Prove: The map $\mu_{z}: M \rightarrow M$ given by $\mu_{z}(m)=z m$ is an R-module homomorphism.
Prove: If R is commutative, then the map $\varphi: R \rightarrow \operatorname{End}_{R}(M)$ given by $\varphi(r)=\mu_{r}$ is a ring homomorphism.
4. Prove that if M is a finitely generated R-module that is generated with n elements, then every quotient of M is finitely generated by n or fewer elements.
5. Suppose V is finite dimensional vector space and $\varphi: V \rightarrow V$ is a linear transformation. Prove that there is an integer m for which $\varphi^{m}(V) \cap \operatorname{ker} \varphi^{m}=0$.

