Abstract Algebra II MATH 602

Directions: Solve five of the following ten questions.

- **1.** Give an example of an integral domain R and a nonzero torsion R-module M such that Ann(M) = 0. Prove that if N is a finitely generated torsion R-module, then $Ann(N) \neq 0$.
- **2.** Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root. Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.
- **3**. Let K/F be an algebraic extension, and let R be a ring with $F \subseteq R \subseteq K$. Show that R is actually a subfield of K.
- 4. Determine the splitting field and its degree over \mathbb{Q} for $f(x) = x^6 4$.
- 5. Let ζ_n be a primitive n^{th} root of unity, and let d be a divisor of n. Prove that ζ_n^d is a primitive $(n/d)^{\text{th}}$ root of unity.
- **6**. Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
- 7. Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.
- **9.** Construct a finite field with 16 elements. (Be sure to show how both multiplication and addition work.) Find a generator for the multiplicative group. How many different generators are there?
- **9**. Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q} .
- 10. Determine the Galois group of the polynomial $x^4 25$.