Directions: Solve five of the following ten questions.

1. Give an example of an integral domain R and a nonzero torsion R-module M such that $\operatorname{Ann}(M)=0$. Prove that if N is a finitely generated torsion R-module, then $\operatorname{Ann}(N) \neq 0$.
2. Show that $p(x)=x^{3}+9 x+6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root. Find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.
3. Let K / F be an algebraic extension, and let R be a ring with $F \subseteq R \subseteq K$.

Show that R is actually a subfield of K.
4. Determine the splitting field and its degree over \mathbb{Q} for $f(x)=x^{6}-4$.
5. Let ζ_{n} be a primitive $n^{\text {th }}$ root of unity, and let d be a divisor of n. Prove that ζ_{n}^{d} is a primitive $(n / d)^{\text {th }}$ root of unity.
6. Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
7. Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 , then all the roots of the cubic are real.
9. Construct a finite field with 16 elements. (Be sure to show how both multiplication and addition work.) Find a generator for the multiplicative group. How many different generators are there?
9. Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q}.
10. Determine the Galois group of the polynomial $x^{4}-25$.

