\qquad R. Hammack

Score: \qquad

1. Short Answer (8 points each)
(a) Draw the subgroup lattice for Q_{8}.

(b) Find the order of $\overline{30}$ in $\mathbb{Z} / 54 \mathbb{Z}$.

Since $\overline{30}=30 \overline{1}$, Proposition 5 (Chapter 3) gives $|\overline{30}|=|30 \overline{1}|=\frac{54}{\operatorname{gcd}(54,30)}=\frac{54}{6}=9$.
Computing directly, $\langle\overline{30}\rangle=\{\overline{0}, \overline{30}, \overline{6}, \overline{36}, \overline{12}, \overline{42}, \overline{18}, \overline{48}, \overline{24}\}$.
(c) State the class equation.

Let $g_{1}, g_{2}, \ldots, g_{k}$ be representatives from the conjugacy classes of G that have more than one element. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{k}\left|G: C_{G}\left(g_{i}\right)\right| .
$$

(d) Write down the elements of a Sylow 2-subgroup of A_{4}. $V=\{1,(12)(34),(13)(24),(14)(23)\}$
(e) Give an example of a non-abelian group that is simple.

The smallest example is A_{5}.
2. Suppose $n \geq 3$. Show that the set $A=\left\{x \in D_{2 n} \mid x^{2}=1\right\}$ is not a subgroup of $D_{2 n}$.

Consider the usual notation $D_{2 n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}$.
Certainly we have $1^{2}=1$ and $s^{2}=1$, but also observe that

$$
\left(s r^{k}\right)^{2}=\left(s r^{k}\right)\left(s r^{k}\right)=\left(s r^{k}\right)\left(r^{-k} s\right)=s r^{k} r^{-k} s=s s=1 .
$$

This gives us at least $n+1$ elements $1, s, s r, s r^{2}, \ldots, s r^{n-1}$ whose square is 1 .
Now, not every element of $D_{2 n}$ has 1 as a square, since $r^{2} \neq 1$.
Therefore $n+1 \leq|A|<2 n$. If A were a subgroup, its order would have to divide $\left|D_{2 n}\right|=2 n$, but that's impossible because $n<|A|<2 n$. Conclusion: A is not a subgroup.
3. Prove the multiplicative group \mathbb{Q}^{+}of positive rational numbers is generated by the set $A=\left\{\left.\frac{1}{p} \right\rvert\, p\right.$ is prime $\}$.

Proof: First we are going to show that any reciprocal $\frac{1}{m}$ of a positive integer m is a product of powers of elements of A. Let m have prime factorization $m=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$. Then

$$
\frac{1}{m}=\left(\frac{1}{p_{1}}\right)^{x_{1}}\left(\frac{1}{p_{2}}\right)^{x_{2}} \cdots\left(\frac{1}{p_{k}}\right)^{x_{k}}
$$

is a product of powers of elements of A, so it belongs to $\langle A\rangle$. Similarly, if $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$, then

$$
n=\left(\frac{1}{p_{1}}\right)^{-x_{1}}\left(\frac{1}{p_{2}}\right)^{-x_{2}} \cdots\left(\frac{1}{p_{k}}\right)^{-x_{k}}
$$

so it follows that any positive integer belongs to $\langle A\rangle$.
Finally, consider an arbitrary $\frac{n}{m} \in \mathbb{Q}^{+}$. Because $n, \frac{1}{m} \in A$ (as established above), we have $\frac{n}{m}=n \frac{1}{m} \in$ $\langle A\rangle$. This shows $\mathbb{Q}^{+} \leq\langle A\rangle$. On the other hand, it is obvious that $\langle A\rangle \leq \mathbb{Q}^{+}$. Therefore $\mathbb{Q}^{+}=\langle A\rangle$.
4. Prove that if $G / Z(G)$ is cyclic, then G is abelian.

Proof: Suppose $G / Z(G)$ is cyclic.
Then for some $a \in G$ we have $G / Z(G) \cong\langle a Z(G)\rangle=\left\{Z(G), a Z(G), a^{2} Z(G), a^{3} Z(G), \ldots, a^{n-1} Z(G)\right\}$, with $a^{n} Z(G)=Z(G)$. Because the cosets in $G / Z(G)$ form a partition of G, any two elements $x, y \in G$ can be written as $x=a^{k} z_{1}$ and $y=a^{\ell} z_{2}$ for appropriate powers k, ℓ and $z_{1}, z_{2} \in Z(G)$. Then

$$
x y=\left(a^{k} z_{1}\right)\left(a^{\ell} z_{2}\right)=a^{k} z_{1} a^{\ell} z_{2}=a^{k} a^{\ell} z_{1} z_{2}=a^{\ell} a^{k} z_{2} z_{1}=\left(a^{\ell} z_{2}\right)\left(a^{k} z_{1}\right)=y x
$$

Therefore G is abelian.
5. Prove that if $|G: H|=2$, then $H \unlhd G$.

Proof: Suppose $|G: H|=2$. Let $a \in G-H$ so the left-cosets of H are precisely H and $a H$. Now, it is necessarily the case that $a H=G-H$, because there are just two cosets, and any element not in H must be in the other coset $a H$, and conversely.

Similarly, for right cosets we have $H a=G-H=a H$. This establishes $H a=a H$, or rather $H=a H a^{-1}$ for all $a \in G-H$. On the other hand, if $a \notin G-H$, then $a \in H$ and $H=a H a^{-1}$ trivially.

We've now reasoned that $H=a H a^{-1}$ for all $a \in G$. Thus $H \unlhd G$.
6. Prove that characteristic subgroups are normal.

Proof: Suppose H is characteristic in G.
This means that $\varphi(H)=H$ for any $\varphi \in \operatorname{Aut}(G)$.
Given $g \in G$, let $\varphi_{g} \in \operatorname{Aut}(G)$ be the inner automorphism $\varphi_{g}(x)=g x g^{-1}$.
Then $\varphi_{g}(H)=H$, which means $g H g^{-1}=H$.
It follows that H is normal.
7. Prove that a group of order 56 has a normal Sylow p-group for some prime p dividing its order.

Proof: As $56=2^{3} \cdot 7$, the only primes dividing its order are 2 and 7. Thus we seek a normal Sylow 2-subgroup P (of order $2^{3}=8$), or a normal Sylow 7 -subgroup Q (of order 7).

Let $Q \in S y l_{7}(G)$. If $n_{7}=1$, then $Q \unlhd G$, in which case we are done. Otherwise, assume $n_{7}>1$. Sylow's theorem asserts $n_{7}=1+7 k$, for some integer k, and $n_{7} \mid 8$. The only possibility is $n_{7}=8$.

Let the 8 Sylow 7 -groups be $\left\{Q_{1}, Q_{2}, Q_{3}, \ldots, Q_{8}\right\}$, with $Q_{1}=Q$. If $i \neq j$, then $Q_{i} \cap Q_{j}$ is a proper subgroup of $Q_{i} \cong Z_{7}$, so $Q_{i} \cap Q_{j}=1$. Thus the sets $Q_{i}-\{1\}$ are disjoint. Let $X=\bigcup_{i=1}^{8}\left(Q_{i}-\{1\}\right)$, so $|X|=8 \cdot 6=48$. Any element of X is a non-identity element of some $Q_{i} \cong Z_{7}$, and therefore has order 7. Note that G has exactly $56-48=8$ elements that are not in this union, and one of these elements is 1 . Say $G-X=\left\{1, g_{1}, g_{2}, g_{3}, \ldots g_{7}\right\}$.

Now, consider a Sylow 2-subgroup P, for which $|P|=2^{3}=8$. As no element of P has order 7 , it is necessarily the case that $P=\left\{1, g_{1}, g_{2}, g_{3}, \ldots g_{8}\right\}$. This is the only possibility for P, so we conclude that P is the unique Sylow 2-subgroup, hence P is normal.

In conclusion, either Q or P is normal.

