Abstract Algebra I

Name:	R. Hammack	Score:

- 1. Short Answer (8 points each)
 - (a) Draw the subgroup lattice for Q_8 .

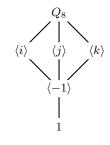
(b) Find the order of $\overline{30}$ in $\mathbb{Z}/54\mathbb{Z}$. Since $\overline{30} = 30\overline{1}$, Proposition 5 (Chapter 3) gives $|\overline{30}| = |30\overline{1}| = \frac{54}{\gcd(54,30)} = \frac{54}{6} = 9$. Computing directly, $\langle \overline{30} \rangle = \{\overline{0}, \overline{30}, \overline{6}, \overline{36}, \overline{12}, \overline{42}, \overline{18}, \overline{48}, \overline{24}\}.$

(c) State the class equation.

Let g_1, g_2, \ldots, g_k be representatives from the conjugacy classes of G that have more than one element. Then

$$|G| = |Z(G)| + \sum_{i=1}^{k} |G: C_G(g_i)|.$$

- (d) Write down the elements of a Sylow 2-subgroup of A_4 . $V = \{1, (12)(34), (13)(24), (14)(23)\}$
- (e) Give an example of a non-abelian group that is simple. The smallest example is A_5 .



2. Suppose $n \ge 3$. Show that the set $A = \{x \in D_{2n} | x^2 = 1\}$ is not a subgroup of D_{2n} .

Consider the usual notation $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$. Certainly we have $1^2 = 1$ and $s^2 = 1$, but also observe that

$$(sr^{k})^{2} = (sr^{k})(sr^{k}) = (sr^{k})(r^{-k}s) = sr^{k}r^{-k}s = ss = 1.$$

This gives us at least n + 1 elements $1, s, sr, sr^2, \ldots, sr^{n-1}$ whose square is 1.

Now, not every element of D_{2n} has 1 as a square, since $r^2 \neq 1$.

Therefore $n + 1 \le |A| < 2n$. If A were a subgroup, its order would have to divide $|D_{2n}| = 2n$, but that's impossible because n < |A| < 2n. Conclusion: A is not a subgroup.

3. Prove the multiplicative group \mathbb{Q}^+ of positive rational numbers is generated by the set $A = \left\{\frac{1}{p} \mid p \text{ is prime}\right\}$.

Proof: First we are going to show that any reciprocal $\frac{1}{m}$ of a positive integer m is a product of powers of elements of A. Let m have prime factorization $m = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$. Then

$$\frac{1}{m} = \left(\frac{1}{p_1}\right)^{x_1} \left(\frac{1}{p_2}\right)^{x_2} \cdots \left(\frac{1}{p_k}\right)^{x_k}$$

is a product of powers of elements of A, so it belongs to $\langle A \rangle$. Similarly, if $n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$, then

$$n = \left(\frac{1}{p_1}\right)^{-x_1} \left(\frac{1}{p_2}\right)^{-x_2} \cdots \left(\frac{1}{p_k}\right)^{-x_k}$$

so it follows that any positive integer belongs to $\langle A \rangle$.

Finally, consider an arbitrary $\frac{n}{m} \in \mathbb{Q}^+$. Because $n, \frac{1}{m} \in A$ (as established above), we have $\frac{n}{m} = n\frac{1}{m} \in \langle A \rangle$. This shows $\mathbb{Q}^+ \leq \langle A \rangle$. On the other hand, it is obvious that $\langle A \rangle \leq \mathbb{Q}^+$. Therefore $\mathbb{Q}^+ = \langle A \rangle$.

4. Prove that if G/Z(G) is cyclic, then G is abelian.

Proof: Suppose G/Z(G) is cyclic.

Then for some $a \in G$ we have $G/Z(G) \cong \langle aZ(G) \rangle = \{Z(G), aZ(G), a^2Z(G), a^3Z(G), \ldots, a^{n-1}Z(G)\},$ with $a^nZ(G) = Z(G)$. Because the cosets in G/Z(G) form a partition of G, any two elements $x, y \in G$ can be written as $x = a^k z_1$ and $y = a^\ell z_2$ for appropriate powers k, ℓ and $z_1, z_2 \in Z(G)$. Then

$$xy = (a^{k}z_{1})(a^{\ell}z_{2}) = a^{k}z_{1}a^{\ell}z_{2} = a^{k}a^{\ell}z_{1}z_{2} = a^{\ell}a^{k}z_{2}z_{1} = (a^{\ell}z_{2})(a^{k}z_{1}) = yx_{1}a^{\ell}z_{2}$$

Therefore G is abelian.

5. Prove that if |G:H| = 2, then $H \leq G$.

Proof: Suppose |G:H| = 2. Let $a \in G - H$ so the left-cosets of H are precisely H and aH. Now, it is necessarily the case that aH = G - H, because there are just two cosets, and any element not in H must be in the other coset aH, and conversely.

Similarly, for right cosets we have Ha = G - H = aH. This establishes Ha = aH, or rather $H = aHa^{-1}$ for all $a \in G - H$. On the other hand, if $a \notin G - H$, then $a \in H$ and $H = aHa^{-1}$ trivially.

We've now reasoned that $H = aHa^{-1}$ for all $a \in G$. Thus $H \leq G$.

6. Prove that characteristic subgroups are normal.

Proof: Suppose H is characteristic in G. This means that $\varphi(H) = H$ for any $\varphi \in \operatorname{Aut}(G)$. Given $g \in G$, let $\varphi_g \in \operatorname{Aut}(G)$ be the inner automorphism $\varphi_g(x) = gxg^{-1}$. Then $\varphi_g(H) = H$, which means $gHg^{-1} = H$. It follows that H is normal.

7. Prove that a group of order 56 has a normal Sylow p-group for some prime p dividing its order.

Proof: As $56 = 2^3 \cdot 7$, the only primes dividing its order are 2 and 7. Thus we seek a normal Sylow 2-subgroup P (of order $2^3 = 8$), or a normal Sylow 7-subgroup Q (of order 7).

Let $Q \in Syl_7(G)$. If $n_7 = 1$, then $Q \leq G$, in which case we are done. Otherwise, assume $n_7 > 1$. Sylow's theorem asserts $n_7 = 1 + 7k$, for some integer k, and $n_7|8$. The only possibility is $n_7 = 8$.

Let the 8 Sylow 7-groups be $\{Q_1, Q_2, Q_3, \ldots, Q_8\}$, with $Q_1 = Q$. If $i \neq j$, then $Q_i \cap Q_j$ is a proper subgroup of $Q_i \cong Z_7$, so $Q_i \cap Q_j = 1$. Thus the sets $Q_i - \{1\}$ are disjoint. Let $X = \bigcup_{i=1}^8 (Q_i - \{1\})$, so $|X| = 8 \cdot 6 = 48$. Any element of X is a non-identity element of some $Q_i \cong Z_7$, and therefore has order 7. Note that G has exactly 56 - 48 = 8 elements that are not in this union, and one of these elements is 1. Say $G - X = \{1, g_1, g_2, g_3, \ldots, g_7\}$.

Now, consider a Sylow 2-subgroup P, for which $|P| = 2^3 = 8$. As no element of P has order 7, it is necessarily the case that $P = \{1, g_1, g_2, g_3, \dots, g_8\}$. This is the only possibility for P, so we conclude that P is the unique Sylow 2-subgroup, hence P is normal.

In conclusion, either Q or P is normal.

-