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1. Short Answer (8 points each)
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(b)

Draw the subgroup lattice for Z/367Z.
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List all Sylow subgroups of Z/36Z.

Because 36 = 2232, there is a Sylow 2-subgroup of order 4 and a Sylow 3-subgroup of order 9.
Sylow 2-subgroup: {0,9,18,27}
Sylow 3-subgroup: {0,4,8,12, 16,20, 24, 28, 32}

Any other Sylow subgroup is conjugate to one of these. But these are normal because Z/36Z is
abelian. Thus these are conjugate only to themselves. Hence they are the only Sylow subgroups.

Find a representative of each conjugacy class of elements of order 4 in Ss.

State Cauchy’s Theorem.

If a prime p divides the order of a finite group G, then G has an element of order p.

Give an example a subgroup that is normal but not characteristic.

Let G = Zy x Z3. Note that that H = Zs x {1} < G because G is abelian. However H is not
characteristic because it is not fixed by the automorphism ¢ € Aut(G) for which p(z,y) = (y, x).



2. Prove that H < Cg(H) if and only if H is abelian.

Proof. Suppose H < Cg(H) = {g € G | gh = hg Yh € H}. This means every g € H satisfies
gh = hg for all h € H. Consequently H is abelian.

Conversely suppose H is abelian. Take any g € H. We claim g € Cg(H). Because H is abelian
it follows that gh = hg Yh € H. This means g € Cq(H) = {9 € G | gh = hg Vh € H}. Thus
H < Cg(H).

3. Prove that the subgroup of Sy generated by (1 2) and (1 3)(2 4) is isomorphic to Ds.

(23)

1 47

(13)(24)

Draw a square with vertices labeled as above. Any symmetry of the square (i.e. any element of Dg)
corresponds to a permutation of corners {1,2,3,4}. In this way we regard Dg as a subgroup of Sy

Reflection s across the z-axis is identified with the permutation s = (1 3)(2 4). Likewise reflection
across the diagonal line through 3 and 4 is identified with the permutation (1 2). Consequently the
subgroup of Sy generated by s = (1 3)(2 4) and (1 2) is isomorphic to a subgroup of Dg. We will
argue that it is all of Dg.

Now, rotation by 90° counterclockwise corresponds to the permutation (132 4) = (12)- (1 3)(24).
Then rotation by 90° clockwise is r = (1324)~!1 = ((12)- (1 3)(24)) "

Consequently the subgroup of Dg generated by (1 2) and (1 3)(2 4) contains both r and s. Because
r and s generate all of Dg, we see that the subgroup of Sy generated by (1 2) and (1 3)(24) is Dg.



4. Suppose A<4G, and A is abelian. Recall that in this situation AB < G. Let B < G be any subgroup.
Prove AN B < AB.

Proof. First note that ANB C AB because any x € ANDB satisfies ¢ € A and therefore x = x1 € AB.
We also know A N B is a subgroup of G because it is the intersection of two subgroups. It follows
that AN B < AB. We now need to show that it is a normal subgroup of AB.

Take elements g € AN B and ab € AB. We must argue that (ab)g(ab)~! € AN B.

First we will show that (ab)g(ab)~! € A. Note (ab)g(ab)™! = a(bgb™1)a™. As g€ A and A<QG, it
follows that bgb~! € A. Then a(bgb~')a~! € A because it is a product of elements of A. Consequently
(ab)g(ab)~! € A.

Next we will show that (ab)g(ab)™' € B. In the previous paragraph we showed (ab)g(ab)~! =
a(bgb~1)a~!, with bgb~! € A. But also, a,a~! € A, and A is abelian, so (ab)g(ab) ™! = a(bgb~1)a~! =
aa~1(bgb~') = bgb~!. But g,b € B, so bgb~! € B. Thus we have established (ab)g(ab)~! € B.

By the previous two paragraphs, (ab)g(ab)~' € AN B, so ANB < AB

5. Suppose G is a group of odd order. Prove that for any non-identity element € G, « and 2~ ! are
not conjugate in G.

Proof. Suppose for the sake of contradiction that G has odd order and there are elements x,g € G
with  # 1 and gzg~' = 1. (That is, = is conjugate to x~1.)

Now, if it happened that z = !, then 22 = 1. and we would have a subgroup (z) < G of order 2.
By Lagrange’s Theorem 2 divides the odd number |G|, which is a contradiction.

Thus for the remainder of the proof we will assume 2 # z~'. We now show the order of g is even.
Taking the inverse of grg™ = 27! yields gz~ '¢g~! = 2. From these we get
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4 2

glrg = g% (¢Pxg7?) g% = g*xg * =1,

and so on, so that for any positive m we have
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From this
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Thus we have determined that g2+ 1zg=(2m+D) = z=1 £ 2 and it follows that g2t # 1 for any m.
Therefore the order of g is even. But the order of g must divide the odd number |G|, a contradiction.



6. Prove that Z(S,) =1 for all n > 3.

Suppose n > 3 and let m € S, be any non-identity permutation. We will show that = ¢ Z(S,,) by
producing a u € S, for which wu # .

Since m # 1 there are distinct elements a,b € {1,2,3,...n} for which 7(a) = b. Select u € S, for
which p(a) = b, but p(b) # m(b). Note that this is always possible. If 7(b) = ¢ ¢ {a, b} then we can
let u be the transposition of a and b. On the other hand, if 7(b) = a we can find a third element
ce{l,2,...,n} and make u(b) = c.

Notice that mu(a) = 7(u(a)) = w(b) # u(b) = pu(n(a)) = pm(a). This means wp # pm, so © does not
commute with everything in .S,, and is therefore not in its center.

Because no non-identity permutation is in Z(.5,) it follows that Z(S,) = 1.

7. Let G be a group of order 200. Prove that G has a normal Sylow 5-subgroup.

Proof. Note that 200 = 2252,

By Sylow’s Theorem, G has ns > 1 Sylow 5-subgroups.

Also by Sylow’s theorem nj divides 22 = 8, and n5 = 1 (mod 5).

Thus ns | 8 and n5 € {1,6,11,16,...}.

The only possibility is ns = 1. Thus there is only one Sylow 5-subgroup; call it P.
As all Sylow 5-subgroups are conjugate, we conclude gPg~! = P for any g € G.
We have produced a normal Sylow 5-subgroup.



