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1. Short Answer (8 points each)

(a) Draw the subgroup lattice for Z/36Z.

〈1〉〈1〉

〈0〉

〈2〉 〈3〉

〈4〉 〈6〉 〈9〉

〈12〉 〈18〉

(b) List all Sylow subgroups of Z/36Z.

Because 36 = 2232, there is a Sylow 2-subgroup of order 4 and a Sylow 3-subgroup of order 9.
Sylow 2-subgroup: {0, 9, 18, 27}
Sylow 3-subgroup: {0, 4, 8, 12, 16, 20, 24, 28, 32}

Any other Sylow subgroup is conjugate to one of these. But these are normal because Z/36Z is
abelian. Thus these are conjugate only to themselves. Hence they are the only Sylow subgroups.

(c) Find a representative of each conjugacy class of elements of order 4 in S8.

(1 2 3 4)
(1 2 3 4)(5 6)
(1 2 3 4)(5 6)(7 8)
(1 2 3 4)(5 6 7 8)

(d) State Cauchy’s Theorem.

If a prime p divides the order of a finite group G, then G has an element of order p.

(e) Give an example a subgroup that is normal but not characteristic.

Let G = Z2 × Z2. Note that that H = Z2 × {1} E G because G is abelian. However H is not
characteristic because it is not fixed by the automorphism ϕ ∈ Aut(G) for which ϕ(x, y) = (y, x).



2. Prove that H ≤ CG(H) if and only if H is abelian.

Proof. Suppose H ≤ CG(H) = {g ∈ G | gh = hg ∀h ∈ H}. This means every g ∈ H satisfies
gh = hg for all h ∈ H. Consequently H is abelian.

Conversely suppose H is abelian. Take any g ∈ H. We claim g ∈ CG(H). Because H is abelian
it follows that gh = hg ∀h ∈ H. This means g ∈ CG(H) = {g ∈ G | gh = hg ∀h ∈ H}. Thus
H ≤ CG(H).

3. Prove that the subgroup of S4 generated by (1 2) and (1 3)(2 4) is isomorphic to D8.

3

1

2

4

(1 3)(2 4)

(2 3)

Draw a square with vertices labeled as above. Any symmetry of the square (i.e. any element of D8)
corresponds to a permutation of corners {1, 2, 3, 4}. In this way we regard D8 as a subgroup of S4

Reflection s across the x-axis is identified with the permutation s = (1 3)(2 4). Likewise reflection
across the diagonal line through 3 and 4 is identified with the permutation (1 2). Consequently the
subgroup of S4 generated by s = (1 3)(2 4) and (1 2) is isomorphic to a subgroup of D8. We will
argue that it is all of D8.

Now, rotation by 90◦ counterclockwise corresponds to the permutation (1 3 2 4) = (1 2) · (1 3)(2 4).
Then rotation by 90◦ clockwise is r = (1 3 2 4)−1 = ((1 2) · (1 3)(2 4))−1.

Consequently the subgroup of D8 generated by (1 2) and (1 3)(2 4) contains both r and s. Because
r and s generate all of D8, we see that the subgroup of S4 generated by (1 2) and (1 3)(2 4) is D8.



4. Suppose AEG, and A is abelian. Recall that in this situation AB ≤ G. Let B ≤ G be any subgroup.
Prove A ∩B EAB.

Proof. First note that A∩B ⊆ AB because any x ∈ A∩B satisfies x ∈ A and therefore x = x1 ∈ AB.
We also know A ∩ B is a subgroup of G because it is the intersection of two subgroups. It follows
that A ∩B ≤ AB. We now need to show that it is a normal subgroup of AB.

Take elements g ∈ A ∩B and ab ∈ AB. We must argue that (ab)g(ab)−1 ∈ A ∩B.

First we will show that (ab)g(ab)−1 ∈ A. Note (ab)g(ab)−1 = a(bgb−1)a−1. As g ∈ A and A EG, it
follows that bgb−1 ∈ A. Then a(bgb−1)a−1 ∈ A because it is a product of elements of A. Consequently
(ab)g(ab)−1 ∈ A.

Next we will show that (ab)g(ab)−1 ∈ B. In the previous paragraph we showed (ab)g(ab)−1 =
a(bgb−1)a−1, with bgb−1 ∈ A. But also, a, a−1 ∈ A, and A is abelian, so (ab)g(ab)−1 = a(bgb−1)a−1 =
aa−1(bgb−1) = bgb−1. But g, b ∈ B, so bgb−1 ∈ B. Thus we have established (ab)g(ab)−1 ∈ B.

By the previous two paragraphs, (ab)g(ab)−1 ∈ A ∩B, so A ∩B EAB

5. Suppose G is a group of odd order. Prove that for any non-identity element x ∈ G, x and x−1 are
not conjugate in G.

Proof. Suppose for the sake of contradiction that G has odd order and there are elements x, g ∈ G
with x 6= 1 and gxg−1 = x−1. (That is, x is conjugate to x−1.)

Now, if it happened that x = x−1, then x2 = 1. and we would have a subgroup 〈x〉 ≤ G of order 2.
By Lagrange’s Theorem 2 divides the odd number |G|, which is a contradiction.

Thus for the remainder of the proof we will assume x 6= x−1. We now show the order of g is even.
Taking the inverse of gxg−1 = x−1 yields gx−1g−1 = x. From these we get

g2xg−2 = g
(
gxg−1

)
g−1 = gx−1g−1 = x.

And once again
g4xg−4 = g2

(
g2xg−2

)
g−2 = g2xg−2 = x,

and so on, so that for any positive m we have

g2mxg−2m = g2
(
g2m−2x g−2m+2

)
g−2 = g2xg−2 = x.

From this
g2m+1xg−2m−1 = g

(
g2mx g−2m

)
g−1 = gxg−1 = x−1.

Thus we have determined that g2m+1xg−(2m+1) = x−1 6= x, and it follows that g2m+1 6= 1 for any m.
Therefore the order of g is even. But the order of g must divide the odd number |G|, a contradiction.



6. Prove that Z(Sn) = 1 for all n ≥ 3.

Suppose n ≥ 3 and let π ∈ Sn be any non-identity permutation. We will show that π /∈ Z(Sn) by
producing a µ ∈ Sn for which πµ 6= µπ.

Since π 6= 1 there are distinct elements a, b ∈ {1, 2, 3, . . . n} for which π(a) = b. Select µ ∈ Sn for
which µ(a) = b, but µ(b) 6= π(b). Note that this is always possible. If π(b) = c /∈ {a, b} then we can
let µ be the transposition of a and b. On the other hand, if π(b) = a we can find a third element
c ∈ {1, 2, . . . , n} and make µ(b) = c.

a b c
π

µ

π
a b c

µ

π

µ

Notice that πµ(a) = π(µ(a)) = π(b) 6= µ(b) = µ(π(a)) = µπ(a). This means πµ 6= µπ, so π does not
commute with everything in Sn and is therefore not in its center.

Because no non-identity permutation is in Z(Sn) it follows that Z(Sn) = 1.

7. Let G be a group of order 200. Prove that G has a normal Sylow 5-subgroup.

Proof. Note that 200 = 2252.
By Sylow’s Theorem, G has n5 ≥ 1 Sylow 5-subgroups.
Also by Sylow’s theorem n5 divides 23 = 8, and n5 ≡ 1 (mod 5).
Thus n5 | 8 and n5 ∈ {1, 6, 11, 16, . . .}.
The only possibility is n5 = 1. Thus there is only one Sylow 5-subgroup; call it P .
As all Sylow 5-subgroups are conjugate, we conclude gPg−1 = P for any g ∈ G.
We have produced a normal Sylow 5-subgroup.


