\qquad R. Hammack

Score: \qquad

1. Short Answer (8 points each)
(a) Draw the subgroup lattice for $\mathbb{Z} / 36 \mathbb{Z}$.

(b) List all Sylow subgroups of $\mathbb{Z} / 36 \mathbb{Z}$.

Because $36=2^{2} 3^{2}$, there is a Sylow 2-subgroup of order 4 and a Sylow 3 -subgroup of order 9 .
Sylow 2-subgroup: $\{0,9,18,27\}$
Sylow 3-subgroup: $\{0,4,8,12,16,20,24,28,32\}$

Any other Sylow subgroup is conjugate to one of these. But these are normal because $\mathbb{Z} / 36 \mathbb{Z}$ is abelian. Thus these are conjugate only to themselves. Hence they are the only Sylow subgroups.
(c) Find a representative of each conjugacy class of elements of order 4 in S_{8}.
(1234)
$(1234)(56)(78)$
$(1234)(5678)$
(d) State Cauchy's Theorem.

If a prime p divides the order of a finite group G, then G has an element of order p.
(e) Give an example a subgroup that is normal but not characteristic.

Let $G=Z_{2} \times Z_{2}$. Note that that $H=Z_{2} \times\{1\} \unlhd G$ because G is abelian. However H is not characteristic because it is not fixed by the automorphism $\varphi \in \operatorname{Aut}(G)$ for which $\varphi(x, y)=(y, x)$.
2. Prove that $H \leq C_{G}(H)$ if and only if H is abelian.

Proof. Suppose $H \leq C_{G}(H)=\{g \in G \mid g h=h g \forall h \in H\}$. This means every $g \in H$ satisfies $g h=h g$ for all $h \in H$. Consequently H is abelian.

Conversely suppose H is abelian. Take any $g \in H$. We claim $g \in C_{G}(H)$. Because H is abelian it follows that $g h=h g \forall h \in H$. This means $g \in C_{G}(H)=\{g \in G \mid g h=h g \forall h \in H\}$. Thus $H \leq C_{G}(H)$.
3. Prove that the subgroup of S_{4} generated by (12) and (13)(24) is isomorphic to D_{8}.

Draw a square with vertices labeled as above. Any symmetry of the square (i.e. any element of D_{8}) corresponds to a permutation of corners $\{1,2,3,4\}$. In this way we regard D_{8} as a subgroup of S_{4}
Reflection s across the x-axis is identified with the permutation $s=(13)(24)$. Likewise reflection across the diagonal line through 3 and 4 is identified with the permutation (12). Consequently the subgroup of S_{4} generated by $s=(13)(24)$ and (12) is isomorphic to a subgroup of D_{8}. We will argue that it is all of D_{8}.

Now, rotation by 90° counterclockwise corresponds to the permutation (13 24) $=\left(\begin{array}{ll}1 & 2\end{array}\right) \cdot(13)(24)$. Then rotation by 90° clockwise is $r=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)^{-1}=\left(\left(\begin{array}{ll}1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}1 & 3\end{array}\right)(24)\right)^{-1}$.

Consequently the subgroup of D_{8} generated by (12) and (13)(24) contains both r and s. Because r and s generate all of D_{8}, we see that the subgroup of S_{4} generated by (12) and $(13)(24)$ is D_{8}.
4. Suppose $A \unlhd G$, and A is abelian. Recall that in this situation $A B \leq G$. Let $B \leq G$ be any subgroup. Prove $A \cap B \unlhd A B$.

Proof. First note that $A \cap B \subseteq A B$ because any $x \in A \cap B$ satisfies $x \in A$ and therefore $x=x 1 \in A B$. We also know $A \cap B$ is a subgroup of G because it is the intersection of two subgroups. It follows that $A \cap B \leq A B$. We now need to show that it is a normal subgroup of $A B$.
Take elements $g \in A \cap B$ and $a b \in A B$. We must argue that $(a b) g(a b)^{-1} \in A \cap B$.
First we will show that $(a b) g(a b)^{-1} \in A$. Note $(a b) g(a b)^{-1}=a\left(b g b^{-1}\right) a^{-1}$. As $g \in A$ and $A \unlhd G$, it follows that $b g b^{-1} \in A$. Then $a\left(b g b^{-1}\right) a^{-1} \in A$ because it is a product of elements of A. Consequently $(a b) g(a b)^{-1} \in A$.
Next we will show that $(a b) g(a b)^{-1} \in B$. In the previous paragraph we showed $(a b) g(a b)^{-1}=$ $a\left(b g b^{-1}\right) a^{-1}$, with $b g b^{-1} \in A$. But also, $a, a^{-1} \in A$, and A is abelian, so $(a b) g(a b)^{-1}=a\left(b g b^{-1}\right) a^{-1}=$ $a a^{-1}\left(b g b^{-1}\right)=b g b^{-1}$. But $g, b \in B$, so $b g b^{-1} \in B$. Thus we have established $(a b) g(a b)^{-1} \in B$.
By the previous two paragraphs, $(a b) g(a b)^{-1} \in A \cap B$, so $A \cap B \unlhd A B$
5. Suppose G is a group of odd order. Prove that for any non-identity element $x \in G, x$ and x^{-1} are not conjugate in G.

Proof. Suppose for the sake of contradiction that G has odd order and there are elements $x, g \in G$ with $x \neq 1$ and $g x g^{-1}=x^{-1}$. (That is, x is conjugate to x^{-1}.)

Now, if it happened that $x=x^{-1}$, then $x^{2}=1$. and we would have a subgroup $\langle x\rangle \leq G$ of order 2 . By Lagrange's Theorem 2 divides the odd number $|G|$, which is a contradiction.

Thus for the remainder of the proof we will assume $x \neq x^{-1}$. We now show the order of g is even. Taking the inverse of $g x g^{-1}=x^{-1}$ yields $g x^{-1} g^{-1}=x$. From these we get

$$
g^{2} x g^{-2}=g\left(g x g^{-1}\right) g^{-1}=g x^{-1} g^{-1}=x .
$$

And once again

$$
g^{4} x g^{-4}=g^{2}\left(g^{2} x g^{-2}\right) g^{-2}=g^{2} x g^{-2}=x,
$$

and so on, so that for any positive m we have

$$
g^{2 m} x g^{-2 m}=g^{2}\left(g^{2 m-2} x g^{-2 m+2}\right) g^{-2}=g^{2} x g^{-2}=x .
$$

From this

$$
g^{2 m+1} x g^{-2 m-1}=g\left(g^{2 m} x g^{-2 m}\right) g^{-1}=g x g^{-1}=x^{-1} .
$$

Thus we have determined that $g^{2 m+1} x g^{-(2 m+1)}=x^{-1} \neq x$, and it follows that $g^{2 m+1} \neq 1$ for any m. Therefore the order of g is even. But the order of g must divide the odd number $|G|$, a contradiction.
6. Prove that $Z\left(S_{n}\right)=1$ for all $n \geq 3$.

Suppose $n \geq 3$ and let $\pi \in S_{n}$ be any non-identity permutation. We will show that $\pi \notin Z\left(S_{n}\right)$ by producing a $\mu \in S_{n}$ for which $\pi \mu \neq \mu \pi$.

Since $\pi \neq 1$ there are distinct elements $a, b \in\{1,2,3, \ldots n\}$ for which $\pi(a)=b$. Select $\mu \in S_{n}$ for which $\mu(a)=b$, but $\mu(b) \neq \pi(b)$. Note that this is always possible. If $\pi(b)=c \notin\{a, b\}$ then we can let μ be the transposition of a and b. On the other hand, if $\pi(b)=a$ we can find a third element $c \in\{1,2, \ldots, n\}$ and make $\mu(b)=c$.

Notice that $\pi \mu(a)=\pi(\mu(a))=\pi(b) \neq \mu(b)=\mu(\pi(a))=\mu \pi(a)$. This means $\pi \mu \neq \mu \pi$, so π does not commute with everything in S_{n} and is therefore not in its center.

Because no non-identity permutation is in $Z\left(S_{n}\right)$ it follows that $Z\left(S_{n}\right)=1$.
7. Let G be a group of order 200. Prove that G has a normal Sylow 5 -subgroup.

Proof. Note that $200=2^{2} 5^{2}$.
By Sylow's Theorem, G has $n_{5} \geq 1$ Sylow 5 -subgroups.
Also by Sylow's theorem n_{5} divides $2^{3}=8$, and $n_{5} \equiv 1(\bmod 5)$.
Thus $n_{5} \mid 8$ and $n_{5} \in\{1,6,11,16, \ldots\}$.
The only possibility is $n_{5}=1$. Thus there is only one Sylow 5 -subgroup; call it P.
As all Sylow 5-subgroups are conjugate, we conclude $g P g^{-1}=P$ for any $g \in G$.
We have produced a normal Sylow 5-subgroup.

