Abstract Algebra I

Name:

R. Hammack

Score:_____

- 1. Short Answer (8 points each)
 - (a) Draw the subgroup lattice for S_3 .

These are the elements \overline{a} , where a is relatively prime to 54. They are: $\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}, \overline{17}, \overline{19}, \overline{23}, \overline{25}, \overline{29}, \overline{31}, \overline{35}, \overline{37}, \overline{41}, \overline{43}, \overline{47}, \overline{49}, \overline{53}$.

(c) List all Sylow subgroups of $\mathbb{Z}/54\mathbb{Z}$.

Note $|\mathbb{Z}/54\mathbb{Z}| = 54 = 2 \cdot 3^3$

Sylow 2-subgroup: $\langle \overline{27} \rangle = \{\overline{0}, \overline{27}\}$ Sylow 3-subgroup: $\langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \dots, \overline{52}\}$

(d) Give an example of two elements of A_5 that are conjugate in S_5 but not conjugate in A_5 . Consider (12345) and (13524) in A_5 . They are conjugate by $\pi = (2354)$ because $\pi(123)\pi^{-1} = (2354)(12345)(4532) = (13524)$. However π is an odd permutation in S_5 and therefore is not in A_5 .

(e) Show $SL_2(\mathbb{F}_3) \not\cong S_4$.

You can check that $|SL_2(\mathbb{F}_3)| = 24 = |S_4|$, so mere cardinality will not prove these are non-isomorphic.

Each element of S_4 has one of the following cycle types: (), (12), (12)(24), (123) or (1234). Each of these has order 1, 2, 3 or 4. Thus, in particular, S_4 has no elements of order 6 or greater. To show $SL_2(\mathbb{F}_3) \not\cong S_4$, we will produce an element in $A \in SL_2(\mathbb{F}_3)$ of order at least 6.

Consider the element $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \in SL_2(\mathbb{F}_3)$. Notice that repeatedly applying this matrix to the vector $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{F}_3^2$ produces the sequence $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \stackrel{A}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{e}_1.$

This implies that $A^k \mathbf{e}_1 \neq \mathbf{e}_1$, for k = 1, 2, 3, 4, 5, but $A^6 \mathbf{e}_1 = \mathbf{e}_1$. It follows that $A^k \neq I$ for k = 1, 2, 3, 4, 5. Thus the order of A is at least 6. It follows that $SL_2(\mathbb{F}_3) \not\cong S_4$.

(On second thought, I guess that was not such a short answer after all. Sorry! RH)

2. Prove that $Z(D_{2n}) = 1$ if n is odd.

Proof: Let n = 2k + 1 be odd. Then $D_{2n} = \{1, r, r^2, r^3, \ldots, r^{2k}, s, sr, sr^2, sr^3, \ldots, sr^{2k}\}$. Notice that $(r^{\ell})^{-1} = r^{(2k+1)-\ell}$. As ℓ and $(2k-1) - \ell$ have opposite parity, it follows that $\ell \neq (2k-1) - \ell$ and hence $(r^{\ell})^{-1} \neq r^{\ell}$ for all $1 \leq \ell \leq 2k$.

Now consider an element of D_{2n} of form r^{ℓ} with $\ell > 0$. Since $r^{\ell}s = sr^{-\ell} = s(r^{\ell})^{-1} \neq sr^{\ell}$, it follows that r^{ℓ} does not commute with s and hence r^{ℓ} is not in the center of D_{2n} .

Next, consider an element of D_{2n} of form sr^{ℓ} with $1 \leq \ell \leq 2k$. Observe that $s(sr^{\ell}) = r^{\ell} \neq (r^{\ell})^{-1} = r^{-\ell} ss = (sr^{\ell})s$. Thus $s(sr^{\ell}) \neq (sr^{\ell})s$, so sr^{ℓ} does not commute with s. Therefore sr^{ℓ} is in in the center of D_{2n} .

The only non-identity element we've not yet checked is s. Notice that $sr = r^{-1}s \neq rs$, so s can't be in the center.

Now we've seen that any non-identity element is not in the center of D_{2n} . Conclusion: $Z(D_{2n}) = 1$.

3. Prove that if the center of G is of index n, then every conjugacy class of G has at most n elements.

Proof: Let A be a conjugacy class in G that contains $a \in G$. Recall that $|A| = |G : C_G(a)|$. Also, $Z(G) \leq C_G(a)$ because if $g \in Z(G)$, then $gag^{-1} = agg^{-1} = a$, hence $g \in C_G(a)$. Then $Z(G) \leq C_G(a) \leq G$. Therefore $|G : Z(G)| = |G : C_G(a)| \cdot |C_G(a) : Z(G)|$, and hence

$$|G:C_G(a)| = \frac{|G:Z(G)|}{|C_G(a):Z(G)|} = \frac{n}{|C_G(a):Z(G)|} \le n.$$

This shows that the conjugacy class containing a has at most n elements.

4. Use Sylow's Theorem to prove Cauchy's Theorem.

Proof: Suppose p is a prime dividing |G|. Let P be a Sylow p-subgroup, so its order is some power p^{α} of p. Take a non-identity element $a \in P$. As the order of a must divide $|P| = p^{\alpha}$, we have $|a| = p^{\beta}$ for some $\beta \leq \alpha$. Then $(a^{p^{\beta-1}})^p = a^{p^{\beta}} = 1$. Now, if n < p, then $(a^{p^{\beta-1}})^n = a^{np^{\beta-1}} \neq 1$ because $np^{\beta-1}$ is smaller than the order p^{β} of a. It follows that the element $a^{p^{\beta-1}} \in P \leq G$ has order p.

5. Prove that if $H \leq G$ has index n, then there is a normal subgroup K of G with $K \leq H$ and $|G:K| \leq n!$.

Proof: Let G act on the set $A = \{aH : a \in G\}$ of left-cosets of H by the action g.aH = gaH. (This is an action because g.(g'.aH) = g.g'aH = gg'aH = (gg').aH and 1.aH = 1aH = aH.) Now, because |G:H| = n, we have |A| = n. Consider the permutation representation $\varphi: G \to S_A \cong S_n$. The kernel K of this homomorphism is a normal subgroup of G. Given an element $k \in K$, we must have k.1H = 1H, that is kH = H, so $k \in H$. Therefore $K \leq H$.

By the First Isomorphism Theorem, $G/K \cong \varphi(G) \leq S_A \cong S_n$. Then $|G:K| = |G/K| = |\varphi(G)| \leq |S_n| = n!$. We have now produced a normal subgroup K of G with $K \leq H$ and $|G:K| \leq n!$.

6. Let G be a group and $\sigma \in \operatorname{Aut}(G)$. Suppose $\varphi_g \in \operatorname{Aut}(G)$ is conjugation by g, that is, $\varphi_g(x) = gxg^{-1}$. Prove that $\sigma \varphi_g \sigma^{-1} = \varphi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G)$.

Proof: Note that, in particular, σ is a homomorphism from G to G. Using the definitions of composition, conjugation, and the homomorphism properties $\sigma(gh) = \sigma(g)\sigma(h)$ and $\sigma(g^{-1}) = \sigma(g)^{-1}$, we obtain the following, for any $x \in G$.

$$\begin{aligned} \sigma \varphi_g \sigma^{-1}(x) &= \sigma \varphi_g(\sigma^{-1}(x)) \\ &= \sigma(g \sigma^{-1}(x) g^{-1}) \\ &= \sigma(g) \sigma(\sigma^{-1}(x)) \sigma(g^{-1}) \\ &= \sigma(g) x \sigma(g^{-1}) \\ &= \sigma(g) x \sigma(g)^{-1} \\ &= \varphi_{\sigma(g)}(x). \end{aligned}$$

This shows $\sigma \varphi_g \sigma^{-1} = \varphi_{\sigma(g)}$.

We've now shown that for any $\varphi_g \in \text{Inn}(G) \leq \text{Aut}(G)$ and any $\sigma \in \text{Aut}(G)$, we have

$$\sigma\varphi_g\sigma^{-1} = \varphi_{\sigma(g)} \in \operatorname{Inn}(G).$$

This means that $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G)$.

7. Let G be a group of order 462. Prove that G is not simple.

Note $462 = 2 \cdot 3 \cdot 7 \cdot 11$.

Let P be a Sylow 11-subgroup. Then $n_{11}(G) \equiv 1 \pmod{11}$ which means $n_{11}(G) \in \{1, 12, 23, 34, 45, \ldots\}$. Also $n_{11}(G)$ divides $m = 2 \cdot 3 \cdot 7 = 42$. From this, we see that the only possibility is $n_{11}(G) = 1$, so P must be normal. Thus G is not simple.