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Name: R. Hammack Score:

1. Short Answer (8 points each)

(a) Draw the subgroup lattice for S3.

S3

1

〈(123)〉
〈(23)〉〈(13)〉〈(12)〉

(b) List all generators of Z/54Z.

These are the elements a, where a is relatively prime to 54. They are:
1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53.

(c) List all Sylow subgroups of Z/54Z.

Note |Z/54Z| = 54 = 2 · 33

Sylow 2-subgroup: 〈27〉 = {0, 27}
Sylow 3-subgroup: 〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, . . . , 52}

(d) Give an example of two elements of A5 that are conjugate in S5 but not conjugate in A5.

Consider (12345) and (13524) in A5.
They are conjugate by π = (2354) because π(123)π−1 = (2354)(12345)(4532) = (13524).
However π is an odd permutation in S5 and therefore is not in A5.

(e) Show SL2(F3) 6∼= S4.

You can check that |SL2(F3)| = 24 = |S4|, so mere cardinality will not prove these are non-
isomorphic.

Each element of S4 has one of the following cycle types: (), (12), (12)(24), (123) or (1234). Each
of these has order 1, 2, 3 or 4. Thus, in particular, S4 has no elements of order 6 or greater. To
show SL2(F3) 6∼= S4, we will produce an element in A ∈ SL2(F3) of order at least 6.

Consider the element A =

[
1 1
2 0

]
∈ SL2(F3). Notice that repeatedly applying this matrix to

the vector e1 =

[
1
0

]
∈ F2

3 produces the sequence

[
1
0

]
A→

[
1
2

]
A→

[
0
2

]
A→

[
2
0

]
A→

[
2
1

]
A→

[
0
1

]
A→

[
1
0

]
= e1.

This implies that Ake1 6= e1, for k = 1, 2, 3, 4, 5, but A6e1 = e1. It follows that Ak 6= I for
k = 1, 2, 3, 4, 5. Thus the order of A is at least 6. It follows that SL2(F3) 6∼= S4.

(On second thought, I guess that was not such a short answer after all. Sorry! RH)



2. Prove that Z(D2n) = 1 if n is odd.

Proof: Let n = 2k+ 1 be odd. Then D2n = {1, r, r2, r3, . . . , r2k, s, sr, sr2, sr3, . . . , sr2k}. Notice that
(r`)−1 = r(2k+1)−`. As ` and (2k − 1) − ` have opposite parity, it follows that ` 6= (2k − 1) − ` and
hence (r`)−1 6= r` for all 1 ≤ ` ≤ 2k.

Now consider an element of of D2n of form r` with ` > 0. Since r`s = sr−` = s(r`)−1 6= sr`, it follows
that r` does not commute with s and hence r` is not in the center of D2n.

Next, consider an element of D2n of form sr` with 1 ≤ ` ≤ 2k. Observe that s(sr`) = r` 6= (r`)−1 =
r−` = r−`ss = (sr`)s. Thus s(sr`) 6= (sr`)s, so sr` does not commute with s. Therefore sr` is in in
the center of D2n.

The only non-identity element we’ve not yet checked is s. Notice that sr = r−1s 6= rs, so s can’t be
in the center.

Now we’ve seen that any non-identity element is not in the center of D2n. Conclusion: Z(D2n) = 1.

3. Prove that if the center of G is of index n, then every conjugacy class of G has at most n elements.

Proof: Let A be a conjugacy class in G that contains a ∈ G. Recall that |A| = |G : CG(a)|.
Also, Z(G) ≤ CG(a) because if g ∈ Z(G), then gag−1 = agg−1 = a, hence g ∈ CG(a). Then
Z(G) ≤ CG(a) ≤ G. Therefore |G : Z(G)| = |G : CG(a)| · |CG(a) : Z(G)|, and hence

|G : CG(a)| = |G : Z(G)|
|CG(a) : Z(G)|

=
n

|CG(a) : Z(G)|
≤ n.

This shows that the conjugacy class containing a has at most n elements.



4. Use Sylow’s Theorem to prove Cauchy’s Theorem.

Proof: Suppose p is a prime dividing |G|. Let P be a Sylow p-subgroup, so its order is some power
pα of p. Take a non-identity element a ∈ P . As the order of a must divide |P | = pα, we have

|a| = pβ for some β ≤ α. Then (ap
β−1

)p = ap
β

= 1. Now, if n < p, then (ap
β−1

)n = anp
β−1 6= 1 be-

cause npβ−1 is smaller than the order pβ of a. It follows that the element ap
β−1 ∈ P ≤ G has order p.

5. Prove that if H ≤ G has index n, then there is a normal subgroup K of G with K ≤ H and
|G : K| ≤ n!.

Proof: Let G act on the set A = {aH : a ∈ G} of left-cosets of H by the action g.aH = gaH.
(This is an action because g.(g′.aH) = g.g′aH = gg′aH = (gg′).aH and 1.aH = 1aH = aH.) Now,
because |G : H| = n, we have |A| = n. Consider the permutation representation ϕ : G → SA ∼= Sn.
The kernel K of this homomorphism is a normal subgroup of G. Given an element k ∈ K, we must
have k.1H = 1H, that is kH = H, so k ∈ H. Therefore K ≤ H.

By the First Isomorphism Theorem, G/K ∼= ϕ(G) ≤ SA ∼= Sn. Then |G : K| = |G/K| = |ϕ(G)| ≤
|Sn| = n!. We have now produced a normal subgroup K of G with K ≤ H and |G : K| ≤ n!.



6. Let G be a group and σ ∈ Aut(G). Suppose ϕg ∈ Aut(G) is conjugation by g, that is, ϕg(x) = gxg−1.
Prove that σϕgσ

−1 = ϕσ(g). Deduce that Inn(G) E Aut(G).

Proof: Note that, in particular, σ is a homomorphism from G to G. Using the definitions of
composition, conjugation, and the homomorphism properties σ(gh) = σ(g)σ(h) and σ(g−1) = σ(g)−1,
we obtain the following, for any x ∈ G.

σϕgσ
−1(x) = σϕg(σ

−1(x))

= σ(gσ−1(x)g−1)

= σ(g)σ(σ−1(x))σ(g−1)

= σ(g)xσ(g−1)

= σ(g)xσ(g)−1

= ϕσ(g)(x).

This shows σϕgσ
−1 = ϕσ(g).

We’ve now shown that for any ϕg ∈ Inn(G) ≤ Aut(G) and any σ ∈ Aut(G), we have

σϕgσ
−1 = ϕσ(g) ∈ Inn(G).

This means that Inn(G) E Aut(G).

7. Let G be a group of order 462. Prove that G is not simple.

Note 462 = 2 · 3 · 7 · 11.

Let P be a Sylow 11-subgroup. Then n11(G) ≡ 1(mod 11) which means n11(G) ∈ {1, 12, 23, 34, 45, . . .}.
Also n11(G) divides m = 2 · 3 · 7 = 42. From this, we see that the only possibility is n11(G) = 1, so
P must be normal. Thus G is not simple.


