\qquad R. Hammack

Score: \qquad

1. Short Answer (8 points each)
(a) Draw the subgroup lattice for S_{3}.

(b) List all generators of $\mathbb{Z} / 54 \mathbb{Z}$.

These are the elements \bar{a}, where a is relatively prime to 54 . They are:
$\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}, \overline{17}, \overline{19}, \overline{23}, \overline{25}, \overline{29}, \overline{31}, \overline{35}, \overline{37}, \overline{41}, \overline{43}, \overline{47}, \overline{49}, \overline{53}$.
(c) List all Sylow subgroups of $\mathbb{Z} / 54 \mathbb{Z}$.

Note $|\mathbb{Z} / 54 \mathbb{Z}|=54=2 \cdot 3^{3}$

Sylow 2-subgroup: $\langle\overline{27}\rangle=\{\overline{0}, \overline{27}\}$
Sylow 3-subgroup: $\langle\overline{2}\rangle=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \ldots, \overline{52}\}$
(d) Give an example of two elements of A_{5} that are conjugate in S_{5} but not conjugate in A_{5}.

Consider (12345) and (13524) in A_{5}.
They are conjugate by $\pi=(2354)$ because $\pi(123) \pi^{-1}=(2354)(12345)(4532)=(13524)$.
However π is an odd permutation in S_{5} and therefore is not in A_{5}.
(e) Show $S L_{2}\left(\mathbb{F}_{3}\right) \not \neq S_{4}$.

You can check that $\left|S L_{2}\left(\mathbb{F}_{3}\right)\right|=24=\left|S_{4}\right|$, so mere cardinality will not prove these are nonisomorphic.

Each element of S_{4} has one of the following cycle types: ()$,(12),(12)(24),(123)$ or (1234). Each of these has order $1,2,3$ or 4 . Thus, in particular, S_{4} has no elements of order 6 or greater. To show $S L_{2}\left(\mathbb{F}_{3}\right) \not \not S_{4}$, we will produce an element in $A \in S L_{2}\left(\mathbb{F}_{3}\right)$ of order at least 6 .

Consider the element $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right] \in S L_{2}\left(\mathbb{F}_{3}\right)$. Notice that repeatedly applying this matrix to the vector $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \in \mathbb{F}_{3}^{2}$ produces the sequence

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
0 \\
2
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
2 \\
0
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \xrightarrow{A}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\mathbf{e}_{1} .
$$

This implies that $A^{k} \mathbf{e}_{1} \neq \mathbf{e}_{1}$, for $k=1,2,3,4,5$, but $A^{6} \mathbf{e}_{1}=\mathbf{e}_{1}$. It follows that $A^{k} \neq I$ for $k=1,2,3,4,5$. Thus the order of A is at least 6 . It follows that $S L_{2}\left(\mathbb{F}_{3}\right) \not \neq S_{4}$.
(On second thought, I guess that was not such a short answer after all. Sorry! RH)
2. Prove that $Z\left(D_{2 n}\right)=1$ if n is odd.

Proof: Let $n=2 k+1$ be odd. Then $D_{2 n}=\left\{1, r, r^{2}, r^{3}, \ldots, r^{2 k}, s, s r, s r^{2}, s r^{3}, \ldots, s r^{2 k}\right\}$. Notice that $\left(r^{\ell}\right)^{-1}=r^{(2 k+1)-\ell}$. As ℓ and $(2 k-1)-\ell$ have opposite parity, it follows that $\ell \neq(2 k-1)-\ell$ and hence $\left(r^{\ell}\right)^{-1} \neq r^{\ell}$ for all $1 \leq \ell \leq 2 k$.

Now consider an element of of $D_{2 n}$ of form r^{ℓ} with $\ell>0$. Since $r^{\ell} s=s r^{-\ell}=s\left(r^{\ell}\right)^{-1} \neq s r^{\ell}$, it follows that r^{ℓ} does not commute with s and hence r^{ℓ} is not in the center of $D_{2 n}$.

Next, consider an element of $D_{2 n}$ of form $s r^{\ell}$ with $1 \leq \ell \leq 2 k$. Observe that $s\left(s r^{\ell}\right)=r^{\ell} \neq\left(r^{\ell}\right)^{-1}=$ $r^{-\ell}=r^{-\ell} s s=\left(s r^{\ell}\right) s$. Thus $s\left(s r^{\ell}\right) \neq\left(s r^{\ell}\right) s$, so $s r^{\ell}$ does not commute with s. Therefore $s r^{\ell}$ is in in the center of $D_{2 n}$.

The only non-identity element we've not yet checked is s. Notice that $s r=r^{-1} s \neq r s$, so s can't be in the center.

Now we've seen that any non-identity element is not in the center of $D_{2 n}$. Conclusion: $Z\left(D_{2 n}\right)=1$.
3. Prove that if the center of G is of index n, then every conjugacy class of G has at most n elements.

Proof: Let A be a conjugacy class in G that contains $a \in G$. Recall that $|A|=\left|G: C_{G}(a)\right|$. Also, $Z(G) \leq C_{G}(a)$ because if $g \in Z(G)$, then $g a g^{-1}=a g g^{-1}=a$, hence $g \in C_{G}(a)$. Then $Z(G) \leq C_{G}(a) \leq G$. Therefore $|G: Z(G)|=\left|G: C_{G}(a)\right| \cdot\left|C_{G}(a): Z(G)\right|$, and hence

$$
\left|G: C_{G}(a)\right|=\frac{|G: Z(G)|}{\left|C_{G}(a): Z(G)\right|}=\frac{n}{\left|C_{G}(a): Z(G)\right|} \leq n
$$

This shows that the conjugacy class containing a has at most n elements.
4. Use Sylow's Theorem to prove Cauchy's Theorem.

Proof: Suppose p is a prime dividing $|G|$. Let P be a Sylow p-subgroup, so its order is some power p^{α} of p. Take a non-identity element $a \in P$. As the order of a must divide $|P|=p^{\alpha}$, we have $|a|=p^{\beta}$ for some $\beta \leq \alpha$. Then $\left(a^{p^{\beta-1}}\right)^{p}=a^{p^{\beta}}=1$. Now, if $n<p$, then $\left(a^{p^{\beta-1}}\right)^{n}=a^{n p^{\beta-1}} \neq 1$ because $n p^{\beta-1}$ is smaller than the order p^{β} of a. It follows that the element $a^{p^{\beta-1}} \in P \leq G$ has order p.
5. Prove that if $H \leq G$ has index n, then there is a normal subgroup K of G with $K \leq H$ and $|G: K| \leq n!$.

Proof: Let G act on the set $A=\{a H: a \in G\}$ of left-cosets of H by the action $g . a H=g a H$. (This is an action because $g \cdot\left(g^{\prime} \cdot a H\right)=g \cdot g^{\prime} a H=g g^{\prime} a H=\left(g g^{\prime}\right) \cdot a H$ and $1 \cdot a H=1 a H=a H$.) Now, because $|G: H|=n$, we have $|A|=n$. Consider the permutation representation $\varphi: G \rightarrow S_{A} \cong S_{n}$. The kernel K of this homomorphism is a normal subgroup of G. Given an element $k \in K$, we must have $k .1 H=1 H$, that is $k H=H$, so $k \in H$. Therefore $K \leq H$.
By the First Isomorphism Theorem, $G / K \cong \varphi(G) \leq S_{A} \cong S_{n}$. Then $|G: K|=|G / K|=|\varphi(G)| \leq$ $\left|S_{n}\right|=n!$. We have now produced a normal subgroup K of G with $K \leq H$ and $|G: K| \leq n$!.
6. Let G be a group and $\sigma \in \operatorname{Aut}(G)$. Suppose $\varphi_{g} \in \operatorname{Aut}(G)$ is conjugation by g, that is, $\varphi_{g}(x)=g x g^{-1}$. Prove that $\sigma \varphi_{g} \sigma^{-1}=\varphi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G) \unlhd \operatorname{Aut}(G)$.

Proof: Note that, in particular, σ is a homomorphism from G to G. Using the definitions of composition, conjugation, and the homomorphism properties $\sigma(g h)=\sigma(g) \sigma(h)$ and $\sigma\left(g^{-1}\right)=\sigma(g)^{-1}$, we obtain the following, for any $x \in G$.

$$
\begin{aligned}
\sigma \varphi_{g} \sigma^{-1}(x) & =\sigma \varphi_{g}\left(\sigma^{-1}(x)\right) \\
& =\sigma\left(g \sigma^{-1}(x) g^{-1}\right) \\
& =\sigma(g) \sigma\left(\sigma^{-1}(x)\right) \sigma\left(g^{-1}\right) \\
& =\sigma(g) x \sigma\left(g^{-1}\right) \\
& =\sigma(g) x \sigma(g)^{-1} \\
& =\varphi_{\sigma(g)}(x) .
\end{aligned}
$$

This shows $\sigma \varphi_{g} \sigma^{-1}=\varphi_{\sigma(g)}$.
We've now shown that for any $\varphi_{g} \in \operatorname{Inn}(G) \leq \operatorname{Aut}(G)$ and any $\sigma \in \operatorname{Aut}(G)$, we have

$$
\sigma \varphi_{g} \sigma^{-1}=\varphi_{\sigma(g)} \in \operatorname{Inn}(G)
$$

This means that $\operatorname{Inn}(G) \unlhd \operatorname{Aut}(G)$.
7. Let G be a group of order 462 . Prove that G is not simple.

Note $462=2 \cdot 3 \cdot 7 \cdot 11$.
Let P be a Sylow 11-subgroup. Then $n_{11}(G) \equiv 1(\bmod 11)$ which means $n_{11}(G) \in\{1,12,23,34,45, \ldots\}$. Also $n_{11}(G)$ divides $m=2 \cdot 3 \cdot 7=42$. From this, we see that the only possibility is $n_{11}(G)=1$, so P must be normal. Thus G is not simple.

