Name:_____

R. Hammack

Score:____

- 1. Short Answer (8 points each)
 - (a) Draw the subgroup lattice for S_3 .

(b) List all generators of $\mathbb{Z}/54\mathbb{Z}$.

(c) List all Sylow subgroups of $\mathbb{Z}/54\mathbb{Z}$.

(d) Give an example of two elements of A_5 that are conjugate in S_5 but not conjugate in A_5 .

(e) Show $SL_2(\mathbb{F}_3) \not\cong S_4$.

2. Prove t	hat $Z(D_{2n}) = 1$ if r	i is odd.				
				i	of C had at mad	t n elements.
3. Prove t	hat if the center of	G is of index n	, then every co	onjugacy class o	or G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	mjugacy ciass o	n G nas at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	mjugacy ciass o	n G nas at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	mjugacy ciass o	i G nas at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	mjugacy ciass o	i G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	mjugacy ciass o	i G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	nijugacy ciass o	i G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	nijugacy ciass o	i G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	nijugacy ciass o	i G has at mos	
3. Prove t	hat if the center of	G is of index n	, then every co	nijugacy ciass o	i G has at mos	

4. Use Sylow's Theorem to prove Cauchy's Theorem.	
5. Prove that if $H \leq G$ has index n , then there is a normal subgroup K of G with $K \leq H$ $ G:K \leq n!$.	and

6. Let G be a group and $\sigma \in \text{Aut}(G)$. Suppose $\varphi_g \in \text{Aut}(G)$ is conjugation by g, that is, $\varphi_g(x) = gx$	cg^{-1}
Prove that $\sigma(\sigma, \sigma^{-1}) = (\sigma, \sigma)$ Deduce that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$	

7. Let G be a group of order 462. Prove that G is not simple.