Directions: Solve five of the following ten questions.
A. \qquad Groups
\qquad

1. Recall that if $H \leq G$, then $[G, H]$ is the subgroup of G generated by all commutators $[g, h]=$ $g^{-1} h^{-1} g h$ with $g \in G$ and $h \in H$.
Prove that H is normal in G if and only if $[G, H] \leq H$.
2. Suppose A and B are normal subgroups of G such that G / A and G / B are both abelian. Prove that $G /(A \cap B)$ is abelian.
3. The matrix $\left[\begin{array}{rr}0 & -1 \\ 1 & 4\end{array}\right]$ has order 5 in $\mathrm{GL}_{2}\left(\mathbb{F}_{19}\right)$. Use it to construct a non-abelian group of order 1805.
B. Rings
4. Let R be a ring with 1 . Arguing strictly from the definition of a ring, show that $(-1)^{2}=1$.
5. Let R be a ring with 1. Prove that the center of the ring $M_{2}(R)$ is $Z=\left\{\left.\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right] \right\rvert\, r \in Z(R)\right\}$.
6. The characteristic of a ring R is the smallest positive integer p such that $1+1+1+\cdots+1=0$ (p times) in R. If no such integer exists, then we say R has characteristic 0 .
Prove that if an integral domain has characteristic p, then p is either prime or zero.
7. Recall that an element a in a ring R is nilpotent if $a^{n}=0$ for some integer n.

Let R be a commutative ring with $1 \neq 0$.
Prove that if a is nilpotent, then $1-a b$ is a unit for every $b \in R$.
8. Suppose R and S are rings with identities.

Prove that every ideal of $R \times S$ is of form $I \times J$, where I is an ideal in R and J is an ideal in S.
9. Prove that the quotient ring $\mathbb{Z}[i] / I$ is finite for every non-zero ideal I in the Gaussian integers $\mathbb{Z}[i]$.
10. Prove that the quotient of a PID by a prime ideal is again a PID.

