Final Exam

Directions: Solve five of the following ten questions.

- A. _____ Groups _____
 - **1.** Recall that if $H \leq G$, then [G, H] is the subgroup of G generated by all commutators $[g, h] = g^{-1}h^{-1}gh$ with $g \in G$ and $h \in H$.

Prove that H is normal in G if and only if $[G, H] \leq H$.

- **2.** Suppose A and B are normal subgroups of G such that G/A and G/B are both abelian. Prove that $G/(A \cap B)$ is abelian.
- **3**. The matrix $\begin{bmatrix} 0 & -1 \\ 1 & 4 \end{bmatrix}$ has order 5 in $GL_2(\mathbb{F}_{19})$. Use it to construct a non-abelian group of order 1805.

B. _

_____ Rings _____

4. Let R be a ring with 1. Arguing strictly from the definition of a ring, show that $(-1)^2 = 1$.

- **5.** Let *R* be a ring with 1. Prove that the center of the ring $M_2(R)$ is $Z = \left\{ \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \mid r \in Z(R) \right\}.$
- 6. The characteristic of a ring R is the smallest positive integer p such that 1 + 1 + 1 + 1 + ... + 1 = 0 (p times) in R. If no such integer exists, then we say R has characteristic 0.
 Prove that if an integral domain has characteristic p, then p is either prime or zero.
- Recall that an element a in a ring R is nilpotent if aⁿ = 0 for some integer n. Let R be a commutative ring with 1 ≠ 0.
 Prove that if a is nilpotent, then 1 ab is a unit for every b ∈ R.
- 8. Suppose R and S are rings with identities. Prove that every ideal of $R \times S$ is of form $I \times J$, where I is an ideal in R and J is an ideal in S.
- **9.** Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for every non-zero ideal I in the Gaussian integers $\mathbb{Z}[i]$.
- 10. Prove that the quotient of a PID by a prime ideal is again a PID.