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Chapter 0
The integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

I a divides b, written a | b, means b = ac for some c ∈ Z.
Example: 6|24 because 24 = 6 · 4.
Example: 6 - 25 because 25 6= 6 · c for all c ∈ Z.
Example: 6 | 0 because 0 = 6 · 0.

I Greatest common divisor (largest positive divisor of 2 numbers)

Example: gcd(12, 30) = 6 or (12, 30) = 6
Example: gcd(12, 0) = 12 or (12, 0) = 12
Example: gcd(12, 35) = 1 or (12, 35) = 1
If gcd(a, b) = 1 we say a and b are relatively prime.

I Least common multiple (least positive multiple of 2 numbers)

lcm(12, 30) = 60 lcm(12, 0) not defined

I Division Algorithm (a÷ b = q + r , where r = remainder)
If a, b ∈ Z and b 6= 0, then ∃ unique q, r ∈ Z with a = qb + r ,
where 0 ≤ r < |b|.
Example: a = 11, b = 4; 11 = 2 · 4 + 3
Example: a = −11, b = 4; −11 = −3 · 4 + 1
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Math 601 Mantra

Never Underestimate The Division Algorithm



Consequence of Division Algorithm

Theorem gcd(a, b) = 1 ⇐⇒ ∃ x , y ∈ Z with ax + by = 1.

Proof (=⇒) Suppose gcd(a, b) = 1.

Choose x , y ∈ Z so that k = ax + by has smallest possible positive value.
(Want to show k = 1.)

By Division Algorithm, a = qk + r with 0 ≤ r < k.

Then r = a− qk = a− q(ax + by) = a(1− qx) + b(−qy).
Then r = 0 (by choice of k). The boxed equation gives a = qk, so k|a.
Reversing roles of a and b, we get k|b.
Thus k is a common positive divisor of both a and b.
Thus 1 ≤ k ≤ gcd(a, b) = 1, so k = 1.

(⇐=) (Contrapositive)
Suppose gcd(a, b) = k > 1.
Then a = kc and b = kc ′ for some c , c ′ ∈ Z.
Thus for any integers x , y , we have
ax + by = kcx + kc ′y = k(cx + c ′y) 6= 1.
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The Integers Modulo n
Given integer n > 0, define an equivalence relation on Z as:
a ≡ b (mod n) provided n|(a− b).

Example: Z/3Z
Equivalence classes:
0 = {x ∈ Z | 3|(x − 0)} = {3k + 0 | k ∈ Z} = {. . . ,−3, 0, 3, 6, . . .}
1 = {x ∈ Z | 3|(x − 1)} = {3k + 1 | k ∈ Z} = {. . . ,−2, 1, 4, 7, . . .}
2 = {x ∈ Z | 3|(x − 2)} = {3k + 2 | k ∈ Z} = {. . . ,−1, 2, 5, 8, . . .}

Addition on equivalence classes: a + b = a + b

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Multiplication on equivalence classes: ab = ab

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

In general Z/nZ = {0, 1, 2, . . . , n − 1}

Operations associative: (ab)c = (ab)c = (ab)c = a(bc) = a(bc) = a(bc)
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Section 1.1: Groups
Definition: A group is a set G with a binary operation ? : G × G → G .
Abbreviation: ?(a, b) = a ? b.
This is required to satisfy the following three axioms:

(i) ? is associative: (a ? b) ? c = a ? (b ? c) ∀a, b, c ∈ G .

(ii) ∃ element e ∈ G for which e ? a = a = a ? e ∀a ∈ G .

(iii) If a ∈ G , then ∃ a−1 ∈ G for which a ? a−1 = e = a−1 ? a.

G is called abelian or commutative if a ? b = b ? a for all a, b ∈ G .

Notation
a ? b identity inverse of a powers laws of exponents

Mult. ab 1 or e a−1 an = aaa · · · a︸ ︷︷ ︸
n

aman = am+n

(am)n = amn

a0 = e a−n = (a−1)n

Add. a + b 0 −a na = a+a+· · ·+a︸ ︷︷ ︸
n

ma+na = (m+n)a

m(na) = (mn)a

0a = 0 (−m)a = m(−a)
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Examples of Groups
Operation +: Z, Q, R, C, Z/nZ

Operation ×: Q− {0}, R− {0}, C− {0 + 0i} Q+, R+

Note: Z/nZ is generally not a group under multiplication.
Example: 6 ∈ Z/12Z has no inverse; 6 a = 1 is impossible.

Important class of multiplicative groups:
(Z/nZ)× = {a ∈ Z/nZ | gcd(a, n) = 1}

Example: (Z/12Z)× = {1, 5, 7, 11}

· 1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5

11 11 7 5 1

If a ∈ (Z/nZ)×, its (multiplicative) inverse exists, as follows:
As gcd(a, n) = 1, we can obtain ax + ny = 1, or ax = 1− ny .
Then a x = ax = 1− ny = 1− ny = 1− 0 = 1.
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The Direct Product

If G and H are groups, then
G × H = {(g , h)|g ∈ G , h ∈ H} is a group.

Operation: (g , h)(g ′, h′) = (gg ′, hh′)

Example: Z/2Z× Z/2Z

+ (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

Isomorphic to the
Klein 4-group:

1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1
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Symmetries of Geometric Objects
(A significant source of groups)

Given a geometric object R, a symmetry
of R is a bijection f : R → R that does
not distort distances.

R

Example: f : R → R is rotation by 90◦.
f

The composition of two symmetries is a
symmetry. We write f ◦ g = fg .
Thus ff = f 2 = rotation by 180◦.

The set of symmetries of R forms a group G :

(i) Function composition is associative.

(ii) Identity is function 1 : R → R defined as 1(x) = x .

(iii) If f is a symmetry, then so is f −1, and f ◦ f −1 = f −1 ◦ f = 1.

In above example G = {1, f , f 2, f 3} = {f 0, f 1, f 2, f 3} ∼= Z/4Z.
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Symmetry group of rectangle is Klein 4-group G ∼= Z/2Z× Z/2Z
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Symmetry group of a frieze pattern

tn = move n units horizontally

Group of symmetries:

G = {. . . , t−3, t−2, t−1, t0, t1, t2, t3, . . .}

Multiplication: tmtn = tm+n

G = {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .}

Multiplication: m ? n = m + n

G ∼= Z
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Symmetry group of a frieze pattern

tn = move n units horizontally tmtn = tm+n

h = horizontal reflection h2 = 1 and tnh = htn

Group of symmetries:

G = {. . . , t−1h0, t0h0, t1h0, t2h0, . . . . . . , t−1h1, t0h1, t1h1, t2h1, . . .}
{. . . , (−1, 0), (0, 0), (1, 0), (2, 0), . . . . . . , (−1, 1), (0, 1), (1, 1), (2, 1), . . .}

Multiplication: (tmhk)(tnh`) = tmhktnh` = tmtnhkh` = tm+nhk+`(mod 2)

(m, k)+(n, `) = · · · · · · · · · · · · · · · · · · · · · · · · (m + n, k + `(mod 2))

G ∼= Z× Z/2Z
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Further Examples

Describing groups of more complicated frieze patterns involves more sophisticated

ideas in group theory (semi-direct products, etc.). This course will develop that

theory, and more. Next time: Dihedral groups.
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