MATH 601 Abstract Algebra I

Richard Hammack

www.people.vcu.edu/~rhammack/Math601/

Today: Chapter 0, Section 1.1

Goal: Establish notation; recall elemental ideas and the definition of a group; introduce groups of symmetries.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$. Example: $6 \mid 24$ because $24=6 \cdot 4$.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6 \cdot 4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers)

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers) $\operatorname{lcm}(12,30)=60$ $\operatorname{lcm}(12,0)$ not defined

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers) $\operatorname{lcm}(12,30)=60$ $\operatorname{lcm}(12,0)$ not defined
- Division Algorithm

$$
(a \div b=q+r, \text { where } r=\text { remainder })
$$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers) $\operatorname{lcm}(12,30)=60$ $\operatorname{lcm}(12,0)$ not defined
- Division Algorithm $\quad(a \div b=q+r$, where $r=$ remainder $)$ If $a, b \in \mathbb{Z}$ and $b \neq 0$, then \exists unique $q, r \in \mathbb{Z}$ with $a=q b+r$, where $0 \leq r<|b|$.

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6.4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers) $\operatorname{lcm}(12,30)=60$ $\operatorname{lcm}(12,0)$ not defined
- Division Algorithm $\quad(a \div b=q+r$, where $r=$ remainder $)$ If $a, b \in \mathbb{Z}$ and $b \neq 0$, then \exists unique $q, r \in \mathbb{Z}$ with $a=q b+r$, where $0 \leq r<|b|$.
Example: $a=11, \quad b=4 ; \quad 11=2 \cdot 4+3$

Chapter 0

The integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

- a divides \mathbf{b}, written $a \mid b$, means $b=a c$ for some $c \in \mathbb{Z}$.

Example: $6 \mid 24$ because $24=6 \cdot 4$.
Example: $6 \nmid 25$ because $25 \neq 6 \cdot c$ for all $c \in \mathbb{Z}$.
Example: $6 \mid 0$ because $0=6 \cdot 0$.

- Greatest common divisor (largest positive divisor of 2 numbers)

Example: $\operatorname{gcd}(12,30)=6$ or $(12,30)=6$
Example: $\operatorname{gcd}(12,0)=12$ or $(12,0)=12$
Example: $\operatorname{gcd}(12,35)=1$ or $(12,35)=1$
If $\operatorname{gcd}(a, b)=1$ we say a and b are relatively prime.

- Least common multiple (least positive multiple of 2 numbers) $\operatorname{lcm}(12,30)=60$ $\operatorname{lcm}(12,0)$ not defined
- Division Algorithm $\quad(a \div b=q+r$, where $r=$ remainder $)$ If $a, b \in \mathbb{Z}$ and $b \neq 0$, then \exists unique $q, r \in \mathbb{Z}$ with $a=q b+r$, where $0 \leq r<|b|$.
Example: $a=11, \quad b=4 ; \quad 11=2 \cdot 4+3$
Example: $a=-11, b=4 ; \quad-11=-3 \cdot 4+1$

Math 601 Mantra

Never Underestimate The Division Algorithm

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k$

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)$

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k).

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$. Reversing roles of a and b, we get $k \mid b$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.
Reversing roles of a and b, we get $k \mid b$.
Thus k is a common positive divisor of both a and b.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.
Reversing roles of a and b, we get $k \mid b$.
Thus k is a common positive divisor of both a and b.
Thus $1 \leq k \leq \operatorname{gcd}(a, b)=1$, so $k=1$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.
Reversing roles of a and b, we get $k \mid b$.
Thus k is a common positive divisor of both a and b.
Thus $1 \leq k \leq \operatorname{gcd}(a, b)=1$, so $k=1$.
(\Longleftarrow) (Contrapositive)
Suppose $\operatorname{gcd}(a, b)=k>1$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.
Reversing roles of a and b, we get $k \mid b$.
Thus k is a common positive divisor of both a and b.
Thus $1 \leq k \leq \operatorname{gcd}(a, b)=1$, so $k=1$.
(\Longleftarrow) (Contrapositive)
Suppose $\operatorname{gcd}(a, b)=k>1$.
Then $a=k c$ and $b=k c^{\prime}$ for some $c, c^{\prime} \in \mathbb{Z}$.

Consequence of Division Algorithm

Theorem $\operatorname{gcd}(a, b)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ with $a x+b y=1$.
Proof (\Longrightarrow) Suppose $\operatorname{gcd}(a, b)=1$.
Choose $x, y \in \mathbb{Z}$ so that $k=a x+$ by has smallest possible positive value. (Want to show $k=1$.)
By Division Algorithm, $a=q k+r$ with $0 \leq r<k$.
Then $r=a-q k=a-q(a x+b y)=a(1-q x)+b(-q y)$.
Then $r=0$ (by choice of k). The boxed equation gives $a=q k$, so $k \mid a$.
Reversing roles of a and b, we get $k \mid b$.
Thus k is a common positive divisor of both a and b.
Thus $1 \leq k \leq \operatorname{gcd}(a, b)=1$, so $k=1$.
(\Longleftarrow) (Contrapositive)
Suppose $\operatorname{gcd}(a, b)=k>1$.
Then $a=k c$ and $b=k c^{\prime}$ for some $c, c^{\prime} \in \mathbb{Z}$.
Thus for any integers x, y, we have $a x+b y=k c x+k c^{\prime} y=k\left(c x+c^{\prime} y\right) \neq 1$.

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as:
$a \equiv b(\bmod n)$ provided $n \mid(a-b)$.
Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:

$$
\begin{aligned}
& \overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\} \\
& \overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}
\end{aligned}
$$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:

$$
\begin{aligned}
& \overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\} \\
& \overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\} \\
& \overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}
\end{aligned}
$$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$

Multiplication on equivalence classes: $\quad \bar{a} \bar{b}=\overline{a b}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

Multiplication on equivalence classes: $\quad \bar{a} \bar{b}=\overline{a b}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$
.	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

Multiplication on equivalence classes: $\quad \bar{a} \bar{b}=\overline{a b}$
In general $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$
.	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

The Integers Modulo n

Given integer $n>0$, define an equivalence relation on \mathbb{Z} as: $a \equiv b(\bmod n)$ provided $n \mid(a-b)$.

Example: $\mathbb{Z} / 3 \mathbb{Z}$
Equivalence classes:
$\overline{0}=\{x \in \mathbb{Z}|3|(x-0)\}=\{3 k+0 \mid k \in \mathbb{Z}\}=\{\ldots,-3,0,3,6, \ldots\}$
$\overline{1}=\{x \in \mathbb{Z}|3|(x-1)\}=\{3 k+1 \mid k \in \mathbb{Z}\}=\{\ldots,-2,1,4,7, \ldots\}$
$\overline{2}=\{x \in \mathbb{Z}|3|(x-2)\}=\{3 k+2 \mid k \in \mathbb{Z}\}=\{\ldots,-1,2,5,8, \ldots\}$

Addition on equivalence classes: $\bar{a}+\bar{b}=\overline{a+b}$

Multiplication on equivalence classes: $\quad \bar{a} \bar{b}=\overline{a b}$
In general $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$
.	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

Operations associative: $(\bar{a} \bar{b}) \bar{c}=(\overline{a b}) \bar{c}=\overline{(a b) c}=\overline{a(b c)}=\bar{a}(\overline{b c})=\bar{a}(\bar{b} \bar{c})$

Section 1.1: Groups

Definition: A group is a set G with a binary operation $\star: G \times G \rightarrow G$. Abbreviation: $\star(a, b)=a \star b$.
This is required to satisfy the following three axioms:
(i) \star is associative: $(a \star b) \star c=a \star(b \star c) \quad \forall a, b, c \in G$.
(ii) \exists element $e \in G$ for which $e \star a=a=a \star e \quad \forall a \in G$.
(iii) If $a \in G$, then $\exists a^{-1} \in G$ for which $a \star a^{-1}=e=a^{-1} \star a$.

Section 1.1: Groups

Definition: A group is a set G with a binary operation $\star: G \times G \rightarrow G$. Abbreviation: $\star(a, b)=a \star b$.
This is required to satisfy the following three axioms:
(i) \star is associative: $(a \star b) \star c=a \star(b \star c) \quad \forall a, b, c \in G$.
(ii) \exists element $e \in G$ for which $e \star a=a=a \star e \quad \forall a \in G$.
(iii) If $a \in G$, then $\exists a^{-1} \in G$ for which $a \star a^{-1}=e=a^{-1} \star a$.
G is called abelian or commutative if $a \star b=b \star a$ for all $a, b \in G$.

Section 1.1: Groups

Definition: A group is a set G with a binary operation $\star: G \times G \rightarrow G$. Abbreviation: $\star(a, b)=a \star b$.
This is required to satisfy the following three axioms:
(i) \star is associative: $(a \star b) \star c=a \star(b \star c) \quad \forall a, b, c \in G$.
(ii) \exists element $e \in G$ for which $e \star a=a=a \star e \quad \forall a \in G$.
(iii) If $a \in G$, then $\exists a^{-1} \in G$ for which $a \star a^{-1}=e=a^{-1} \star a$.
G is called abelian or commutative if $a \star b=b \star a$ for all $a, b \in G$.

Notation

	$a \star b$	identity	inverse of a	powers	laws of exponents
Mult.	$a b$	1 or e	a^{-1}	$a^{n}=\underbrace{a a a \cdots a}_{n}$	$a^{m} a^{n}=a^{m+n}$
					$a^{0}=e$

Add.

Section 1.1: Groups

Definition: A group is a set G with a binary operation $\star: G \times G \rightarrow G$. Abbreviation: $\star(a, b)=a \star b$.
This is required to satisfy the following three axioms:
(i) \star is associative: $(a \star b) \star c=a \star(b \star c) \quad \forall a, b, c \in G$.
(ii) \exists element $e \in G$ for which $e \star a=a=a \star e \quad \forall a \in G$.
(iii) If $a \in G$, then $\exists a^{-1} \in G$ for which $a \star a^{-1}=e=a^{-1} \star a$.
G is called abelian or commutative if $a \star b=b \star a$ for all $a, b \in G$.

Notation

	$a \star b$	identity	inverse of a	powers	laws of exponents
Mult.	$a b$	1 or e	a^{-1}	$a^{n}=\underbrace{a a a \cdots a}_{n}$	$a^{m} a^{n}=a^{m+n}$
				$\left(a^{m}\right)^{n}=a^{m n}$	
				$a^{0}=e$	$a^{-n}=\left(a^{-1}\right)^{n}$
Add.	$a+b$	0	$-a$	$n a=\underbrace{a+a+\cdots+a}_{n}$	$m a+n a=(m+n) a$
				$0 a=0$	$m(n a)=(m n) a$ $(-m) a=m(-a)$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\overline{6} \bar{a}=\overline{1}$ is impossible.

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\overline{6} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\bar{\sigma} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Example: $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\bar{\sigma} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Example: $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{\overline{1}, \overline{5}, \overline{\bar{r}}, \overline{11}\}$

\cdot	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{11}$	$\overline{7}$
$\overline{7}$	$\overline{7}$	$\overline{11}$	$\overline{1}$	$\overline{5}$
$\overline{11}$	$\overline{11}$	$\overline{7}$	$\overline{5}$	$\overline{1}$

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \quad \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\bar{\sigma} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Example: $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$

\cdot	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{11}$	$\overline{7}$
$\overline{7}$	$\overline{7}$	$\overline{11}$	$\overline{1}$	$\overline{5}$
$\overline{11}$	$\overline{11}$	$\overline{7}$	$\overline{5}$	$\overline{1}$

If $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, its (multiplicative) inverse exists, as follows:

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\bar{\sigma} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Example: $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$

\cdot	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{11}$	$\overline{7}$
$\overline{7}$	$\overline{7}$	$\overline{11}$	$\overline{1}$	$\overline{5}$
$\overline{11}$	$\overline{11}$	$\overline{7}$	$\overline{5}$	$\overline{1}$

If $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, its (multiplicative) inverse exists, as follows:
As $\operatorname{gcd}(a, n)=1$, we can obtain $a x+n y=1$, or $a x=1-n y$.

Examples of Groups

Operation +: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$
Operation $\times: \mathbb{Q}-\{0\}, \mathbb{R}-\{0\}, \mathbb{C}-\{0+0 i\} \mathbb{Q}^{+}, \mathbb{R}^{+}$
Note: $\mathbb{Z} / n \mathbb{Z}$ is generally not a group under multiplication. Example: $\bar{\sigma} \in \mathbb{Z} / 12 \mathbb{Z}$ has no inverse; $\bar{\sigma} \bar{a}=\overline{1}$ is impossible.

Important class of multiplicative groups:
$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid \operatorname{gcd}(a, n)=1\}$

Example: $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$

\cdot	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{11}$	$\overline{7}$
$\overline{7}$	$\overline{7}$	$\overline{11}$	$\overline{1}$	$\overline{5}$
$\overline{11}$	$\overline{11}$	$\overline{7}$	$\overline{5}$	$\overline{1}$

If $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, its (multiplicative) inverse exists, as follows:
As $\operatorname{gcd}(a, n)=1$, we can obtain $a x+n y=1$, or $a x=1-n y$.
Then $\bar{a} \bar{x}=\overline{a x}=\overline{1-n y}=\overline{1}-\overline{n y}=\overline{1}-\overline{0}=\overline{1}$.

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.
Operation: $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.
Operation: $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$

Example: $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.
Operation: $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$

Example: $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

+	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.
Operation: $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$

	+	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
Example: $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$(1,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
	$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
	$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Isomorphic to the Klein 4-group:

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

The Direct Product

If G and H are groups, then
$G \times H=\{(g, h) \mid g \in G, h \in H\}$ is a group.
Operation: $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$

+	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Isomorphic to the

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

\cdot	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{11}$	$\overline{7}$
$\overline{7}$	$\overline{7}$	$\overline{11}$	$\overline{1}$	$\overline{5}$
$\overline{11}$	$\overline{11}$	$\overline{7}$	$\overline{5}$	$\overline{1}$

Symmetries of Geometric Objects

(A significant source of groups)

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Example: $f: R \rightarrow R$ is rotation by 90°.

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Example: $f: R \rightarrow R$ is rotation by 90°.
The composition of two symmetries is a symmetry. We write $f \circ g=f g$.
Thus $f f=f^{2}=$ rotation by 180°.

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Example: $f: R \rightarrow R$ is rotation by 90°.
The composition of two symmetries is a symmetry. We write $f \circ g=f g$.
Thus $f f=f^{2}=$ rotation by 180°.

The set of symmetries of R forms a group G :
(i) Function composition is associative.
(ii) Identity is function $1: R \rightarrow R$ defined as $1(x)=x$.
(iii) If f is a symmetry, then so is f^{-1}, and $f \circ f^{-1}=f^{-1} \circ f=1$.

Symmetries of Geometric Objects

(A significant source of groups)
Given a geometric object R, a symmetry of R is a bijection $f: R \rightarrow R$ that does not distort distances.

Example: $f: R \rightarrow R$ is rotation by 90°.
The composition of two symmetries is a symmetry. We write $f \circ g=f g$.
Thus $f f=f^{2}=$ rotation by 180°.

The set of symmetries of R forms a group G :
(i) Function composition is associative.
(ii) Identity is function $1: R \rightarrow R$ defined as $1(x)=x$.
(iii) If f is a symmetry, then so is f^{-1}, and $f \circ f^{-1}=f^{-1} \circ f=1$.

In above example $G=\left\{1, f, f^{2}, f^{3}\right\}=\left\{f^{0}, f^{1}, f^{2}, f^{3}\right\} \cong \mathbb{Z} / 4 \mathbb{Z}$.

Symmetry group of a rectangle

Symmetry group of a rectangle

1	2
4	3

Symmetry group of a rectangle

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

Symmetry group of a rectangle

$\mu_{1}^{2}=1$
$\mu_{2}^{2}=1$

Symmetry group of a rectangle

$\mu_{1}^{2}=1$
$\mu_{2}^{2}=1$

\circ	1	μ_{1}	μ_{2}	r
1				
μ_{1}				
μ_{2}				
r				
r				

Symmetry group of a rectangle

$\mu_{1}^{2}=1$
$\mu_{2}^{2}=1$

$$
\begin{array}{c|cccc}
\circ & 1 & \mu_{1} & \mu_{2} & r \\
\hline 1 & 1 & \mu_{1} & \mu_{2} & r \\
\mu_{1} & \mu_{1} & & & \\
\mu_{2} & \mu_{2} & & & \\
r & r & & & \\
r & & &
\end{array}
$$

Symmetry group of a rectangle

$\mu_{1}^{2}=1$

$$
\mu_{2}^{2}=1
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1		
μ_{2}	μ_{2}		1	
r	r			1

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

$$
r^{2}=1
$$

$$
\mu_{2} \mu_{1}=r
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1		
μ_{2}	μ_{2}		1	
r	r			1

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

$$
r^{2}=1
$$

$$
\mu_{2} \mu_{1}=r
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1	r	
μ_{2}	μ_{2}	r	1	
r	r			1

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1	r	μ_{2}
μ_{2}	μ_{2}	r	1	
r	r	μ_{2}		1

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1	r	μ_{2}
μ_{2}	μ_{2}	r	1	μ_{1}
r	r	μ_{2}	μ_{1}	1

Symmetry group of a rectangle

$$
\begin{aligned}
& \mu_{1}^{2}=1 \\
& \mu_{2}^{2}=1
\end{aligned}
$$

\circ	1	μ_{1}	μ_{2}	r
1	1	μ_{1}	μ_{2}	r
μ_{1}	μ_{1}	1	r	μ_{2}
μ_{2}	μ_{2}	r	1	μ_{1}
r	r	μ_{2}	μ_{1}	1

Symmetry group of rectangle is Klein 4-group $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

Symmetry group of a frieze pattern

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Group of symmetries:

$$
G=\left\{\ldots, t_{-3}, t_{-2}, t_{-1}, t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right\}
$$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Group of symmetries:
$G=\left\{\ldots, t_{-3}, t_{-2}, t_{-1}, t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right\}$

Multiplication: $t_{m} t_{n}=t_{m+n}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Group of symmetries:
$G=\left\{\ldots, t_{-3}, t_{-2}, t_{-1}, t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right\}$
$G=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Multiplication: $t_{m} t_{n}=t_{m+n}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Group of symmetries:
$G=\left\{\ldots, t_{-3}, t_{-2}, t_{-1}, t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right\}$
$G=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Multiplication: $t_{m} t_{n}=t_{m+n}$
Multiplication: $m \star n=m+n$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Group of symmetries:
$G=\left\{\ldots, t_{-3}, t_{-2}, t_{-1}, t_{0}, t_{1}, t_{2}, t_{3}, \ldots\right\}$
$G=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Multiplication: $t_{m} t_{n}=t_{m+n}$
Multiplication: $m \star n=m+n$
$G \cong \mathbb{Z}$

Symmetry group of a frieze pattern

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
t_{m} t_{n}=t_{m+n}
$$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
t_{m} t_{n}=t_{m+n}
$$

$h=$ horizontal reflection

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
t_{m} t_{n}=t_{m+n}
$$

$h=$ horizontal reflection

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
h=\text { horizontal reflection }
$$

$$
\begin{aligned}
& t_{m} t_{n}=t_{m+n} \\
& h^{2}=1
\end{aligned}
$$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally
$t_{m} t_{n}=t_{m+n}$
$h=$ horizontal reflection
$h^{2}=1$ and $t_{n} h=h t_{n}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally
$t_{m} t_{n}=t_{m+n}$
$h=$ horizontal reflection
$h^{2}=1$ and $t_{n} h=h t_{n}$

Group of symmetries:
$G=\left\{\ldots, t_{-1} h^{0}, t_{0} h^{0}, t_{1} h^{0}, t_{2} h^{0}, \ldots \ldots, t_{-1} h^{1}, t_{0} h^{1}, t_{1} h^{1}, t_{2} h^{1}, \ldots\right\}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally
$t_{m} t_{n}=t_{m+n}$
$h=$ horizontal reflection
$h^{2}=1$ and $t_{n} h=h t_{n}$

Group of symmetries:
$G=\left\{\ldots, t_{-1} h^{0}, t_{0} h^{0}, t_{1} h^{0}, t_{2} h^{0}, \ldots \ldots, t_{-1} h^{1}, t_{0} h^{1}, t_{1} h^{1}, t_{2} h^{1}, \ldots\right\}$ $\{\ldots,(-1,0),(0,0),(1,0),(2,0), \ldots \ldots,(-1,1),(0,1),(1,1),(2,1), \ldots\}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
h=\text { horizontal reflection }
$$

$$
\begin{aligned}
& t_{m} t_{n}=t_{m+n} \\
& h^{2}=1 \quad \text { and } t_{n} h=h t_{n}
\end{aligned}
$$

Group of symmetries:
$G=\left\{\ldots, t_{-1} h^{0}, t_{0} h^{0}, t_{1} h^{0}, t_{2} h^{0}, \ldots \ldots, t_{-1} h^{1}, t_{0} h^{1}, t_{1} h^{1}, t_{2} h^{1}, \ldots\right\}$ $\{\ldots,(-1,0),(0,0),(1,0),(2,0), \ldots \ldots,(-1,1),(0,1),(1,1),(2,1), \ldots\}$

Multiplication: $\left(t_{m} h^{k}\right)\left(t_{n} h^{\ell}\right)=t_{m} h^{k} t_{n} h^{\ell}=t_{m} t_{n} h^{k} h^{\ell}=t_{m+n} h^{k+\ell(\bmod 2)}$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
h=\text { horizontal reflection }
$$

$$
\begin{aligned}
& t_{m} t_{n}=t_{m+n} \\
& h^{2}=1 \quad \text { and } t_{n} h=h t_{n}
\end{aligned}
$$

Group of symmetries:
$G=\left\{\ldots, t_{-1} h^{0}, t_{0} h^{0}, t_{1} h^{0}, t_{2} h^{0}, \ldots \ldots, t_{-1} h^{1}, t_{0} h^{1}, t_{1} h^{1}, t_{2} h^{1}, \ldots\right\}$ $\{\ldots,(-1,0),(0,0),(1,0),(2,0), \ldots \ldots,(-1,1),(0,1),(1,1),(2,1), \ldots\}$

Multiplication: $\left(t_{m} h^{k}\right)\left(t_{n} h^{\ell}\right)=t_{m} h^{k} t_{n} h^{\ell}=t_{m} t_{n} h^{k} h^{\ell}=t_{m+n} h^{k+\ell(\bmod 2)}$

$$
(m, k)+(n, \ell)=\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot(m+n, k+\ell(\bmod 2))
$$

Symmetry group of a frieze pattern

$t_{n}=$ move n units horizontally

$$
h=\text { horizontal reflection }
$$

$$
\begin{aligned}
& t_{m} t_{n}=t_{m+n} \\
& h^{2}=1 \quad \text { and } t_{n} h=h t_{n}
\end{aligned}
$$

Group of symmetries:
$G=\left\{\ldots, t_{-1} h^{0}, t_{0} h^{0}, t_{1} h^{0}, t_{2} h^{0}, \ldots \ldots, t_{-1} h^{1}, t_{0} h^{1}, t_{1} h^{1}, t_{2} h^{1}, \ldots\right\}$ $\{\ldots,(-1,0),(0,0),(1,0),(2,0), \ldots \ldots,(-1,1),(0,1),(1,1),(2,1), \ldots\}$

Multiplication: $\left(t_{m} h^{k}\right)\left(t_{n} h^{\ell}\right)=t_{m} h^{k} t_{n} h^{\ell}=t_{m} t_{n} h^{k} h^{\ell}=t_{m+n} h^{k+\ell(\bmod 2)}$ $(m, k)+(n, \ell)=\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot(m+n, k+\ell(\bmod 2))$
$G \cong \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

Further Examples

Describing groups of more complicated frieze patterns involves more sophisticated ideas in group theory (semi-direct products, etc.). This course will develop that theory, and more. Next time: Dihedral groups.

