$\qquad$ Score: $\qquad$

Directions: This is a closed-book, closed-notes test. You may not use calculators, computers, etc.

1. (12 points) Is the sequence $6,6,5,4,3,2,2$ graphical?
2. (12 points) Prove that if $G$ is a graph with minimum degree $\delta(G) \geq 2$ then $G$ contains a cycle.
3. (12 points) Show that for every two vertices $u, v$ in a connected graph $G$, there is a $u-v$ walk containing all vertices of $G$.
4. (12 points) Construct a tree with Prüfer code (1,8,1,5,2,5).
5. (12 points) Let $G$ be a connected graph of order 3 or more. Prove that if $e=u v$ is a bridge of $G$ then at least one of $u$ or $v$ is a cut vertex of $G$.
6. (12 points) Find necessary and sufficient conditions on $G$ and $H$ that guarantee that the Cartesian product $G \square H$ is Eulerian. Justify your answer.
7. (14 points) Let $G$ be a graph of order $n \geq 3$ having the property that for each vertex $x \in V(G)$, there is a Hamiltonian path with initial vertex $x$. Show that $G$ is 2 -connected but not necessarily Hamiltonian.
8. (14 points) Prove or disprove: If every vertex of a tournament belongs to a cycle, then the tournament is strong.
