Name: \qquad Score: \qquad

Directions: This is a closed-book, closed notes test. Please answer in the space provided. You may not use calculators, computers, etc.

1. (15 points) A graph G is drawn below. Label each vertex with its eccentricity. State the radius and diameter of G. Indicate the center of G.

Radius is 3 .
Diameter is 6 .
The center is the single shaded vertex with minimum eccentricity 3 .
2. (15 points) Suppose $k \geq 2$. Prove that a k-regular bipartite graph has no cut-edge.

Proof. Suppose for the sake of contradiction that G is a k-regular bipartite graph $(k \geq 2)$ with a cut edge $a b$. When $a b$ is removed from G, the component of G containing the edge $a b$ splits into two new components; call them A and B, with $a \in A$ and $b \in B$. Both of these components are nontrivial, since their vertices have degrees at least $k-1 \geq 1$. Now, the component A is bipartite (since it is a subgraph of a bipartite graph), so there is a bipartition $V(A)=X \cup Y$ of A with each edge of A running between X and Y. Without loss of generality, say $a \in Y$. Then every vertex of X has degree k. By contrast every vertex of Y has degree k, except for the vertex a, which has degree $k-1$. Therefore, we can count the number of edges in A in two ways:

$$
\begin{aligned}
|E(A)|=k|X| & =k(|Y|-1)+(k-1) \\
k|X| & =k|Y|-1 \\
1 & =k(|Y|-|X|) \\
\frac{1}{k} & =|Y|-|X| \in \mathbb{Z} .
\end{aligned}
$$

From the above, it follows that $k=1$, contradicting the fact that $k \geq 2$.
3. (15 points) Let $k \geq 2$ be a fixed integer. Suppose a tree T has p vertices of degree k, and all the other vertices of T have degree 1. Find $n(T)$.
Proof. Sice T has p vertices of degree k and $n(T)-p$ vertices of degree 1 , we have

$$
\begin{aligned}
2|E(T)| & =\sum_{x \in V(T)} d(x) \\
& =p \cdot k+(n(T)-p) \cdot 1 \\
& =p(k-1)+n(T) .
\end{aligned}
$$

But T is a tree, so $|E(T)|=n(T)-1$, and the above calculation yields

$$
\begin{aligned}
2(n(T)-1) & =p(k-1)+n(T) \\
2 n(T)-2 & =p(k-1)+n(T) \\
n(T) & =p(k-1)+2
\end{aligned}
$$

Therefore $n(T)=p(k-1)+2$.
4. (15 points) State the following theorems carefully and precisely.
(a) Berge's Theorem

A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path)
(An M-augmenting path is a path which alternates between edges in M and not in M, and whose endpoints are not saturated by M.)
(b) Hall's Theorem:

Suppose G is a bipartite graph with bipartition $V(G)=X \cup Y$.
Then G has a matching that saturates X if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$.
(Here $N(S)$ denotes the set of all vertices of G which are adjacent to a vertex of S.)
(c) The König-Egervary Theorem

For any bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.
(A vertex cover is a set $Q \subseteq V(G)$ such that every edge of G has an endpoint in Q.)
5. (20 points) Find the listed invariants for the Petersen graph.

(a) $\alpha=4 \quad(\{2,0,8,9\}$ is a maximum independent set. $)$
(b) $\gamma=3$
($\{3,5,6\}$ is a minimum dominating set.)
(c) $\alpha^{\prime}=5$
($\{05,16,27,38,49\}$ is a perfect matching.)
(d) $\chi=3 \quad(\chi>2$ since P has 5 -cycle; See 3 -coloring on left. $)$
(e) $\omega=2$
(Petersen graph has K_{2} 's but no K_{3} 's.)
6. (10 points) Prove that $\gamma \leq \alpha$ for any graph.

Proof. Let I be a largest independent set in G, so $|I|=\alpha$. Now, if x is any vertex of G, then either $x \in I$, or x is adjacent to a vertex in I. (If x were not adjacent to a vertex in I, then we could enlarge the independent set I by appending x to it, but I is already a largest independent set. Since every vertex of G is in either in I or adjacent to a vertex in I, it follows that I is a dominating set. Since γ is the size of a smallest dominating set, we have $\gamma \leq I=\alpha$.

QED
7. (10 points) Prove that $\chi \cdot \alpha \geq n$ for any graph.

Proof. Consider a coloring of G with χ colors $\{1,2, \ldots, \chi\}$. For any color i, the set X_{i} of vertices with that color is an independent set in G, and therefore $\left|X_{i}\right| \leq \alpha$. Therefore we have

$$
\begin{aligned}
n & =\left|X_{1}\right|+\left|X_{2}\right|+\cdots+\left|X_{\chi}\right| \\
& \leq \alpha+\alpha+\cdots+\alpha \\
& =\chi \alpha .
\end{aligned}
$$

This establishes $\chi \cdot \alpha \geq n$.
QED

