
MATH 591: Graph Theory Test October 15, 2010

Name: Score:

Directions: This is a closed-book, closed notes test. Please answer in the space provided. You may not use
calculators, computers, etc.

1. (15 points) A graph G is drawn below. Label each vertex with its eccentricity.
State the radius and diameter of G. Indicate the center of G.

G

6 5 6

5 4 5 6

4 3 4

5 4 5

Radius is 3.
Diameter is 6.
The center is the single shaded vertex with minimum eccentricity 3.

2. (15 points) Suppose k ≥ 2. Prove that a k-regular bipartite graph has no cut-edge.

Proof. Suppose for the sake of contradiction that G is a k-regular bipartite graph (k ≥ 2) with a cut edge
ab. When ab is removed from G, the component of G containing the edge ab splits into two new components;
call them A and B, with a ∈ A and b ∈ B. Both of these components are nontrivial, since their vertices have
degrees at least k − 1 ≥ 1. Now, the component A is bipartite (since it is a subgraph of a bipartite graph),
so there is a bipartition V (A) = X ∪ Y of A with each edge of A running between X and Y . Without loss of
generality, say a ∈ Y . Then every vertex of X has degree k. By contrast every vertex of Y has degree k, except
for the vertex a, which has degree k − 1. Therefore, we can count the number of edges in A in two ways:

|E(A)| = k|X| = k(|Y | − 1) + (k − 1)
k|X| = k|Y | − 1

1 = k(|Y | − |X|)
1
k

= |Y | − |X| ∈ Z.

From the above, it follows that k = 1, contradicting the fact that k ≥ 2. QED



3. (15 points) Let k ≥ 2 be a fixed integer. Suppose a tree T has p vertices of degree k, and all the other vertices
of T have degree 1. Find n(T ).

Proof. Sice T has p vertices of degree k and n(T )− p vertices of degree 1, we have

2|E(T )| =
∑

x∈V (T )

d(x)

= p · k + (n(T )− p) · 1
= p(k − 1) + n(T ).

But T is a tree, so |E(T )| = n(T )− 1, and the above calculation yields

2(n(T )− 1) = p(k − 1) + n(T )
2n(T )− 2 = p(k − 1) + n(T )

n(T ) = p(k − 1) + 2

Therefore n(T ) = p(k − 1) + 2.

4. (15 points) State the following theorems carefully and precisely.

(a) Berge’s Theorem

A matching M in a graph G is a maximum matching if and only if G has no M -augmenting path)

(An M -augmenting path is a path which alternates between edges in M and not in M , and whose endpoints
are not saturated by M .)

(b) Hall’s Theorem:

Suppose G is a bipartite graph with bipartition V (G) = X ∪ Y .
Then G has a matching that saturates X if and only if |N(S)| ≥ |S| for all S ⊆ X.

(Here N(S) denotes the set of all vertices of G which are adjacent to a vertex of S.)

(c) The König-Egervary Theorem

For any bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.

(A vertex cover is a set Q ⊆ V (G) such that every edge of G has an endpoint in Q.)



5. (20 points) Find the listed invariants for the Petersen graph.
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1
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5

6

7
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(a) α = 4 ({2, 0, 8, 9} is a maximum independent set.)

(b) γ = 3 ({3, 5, 6} is a minimum dominating set.)

(c) α′ = 5 ({05, 16, 27, 38, 49} is a perfect matching.)

(d) χ = 3 (χ > 2 since P has 5-cycle; See 3-coloring on left.)

(e) ω = 2 (Petersen graph has K2’s but no K3’s.)

6. (10 points) Prove that γ ≤ α for any graph.

Proof. Let I be a largest independent set in G, so |I| = α. Now, if x is any vertex of G, then either x ∈ I, or
x is adjacent to a vertex in I. (If x were not adjacent to a vertex in I, then we could enlarge the independent
set I by appending x to it, but I is already a largest independent set. Since every vertex of G is in either in I
or adjacent to a vertex in I, it follows that I is a dominating set. Since γ is the size of a smallest dominating
set, we have γ ≤ I = α. QED

7. (10 points) Prove that χ · α ≥ n for any graph.

Proof. Consider a coloring of G with χ colors {1, 2, . . . , χ}. For any color i, the set Xi of vertices with that
color is an independent set in G, and therefore |Xi| ≤ α. Therefore we have

n = |X1|+ |X2|+ · · ·+ |Xχ|
≤ α+ α+ · · ·+ α

= χα.

This establishes χ · α ≥ n. QED


