MATH 591: Graph Theory Test October 15, 2010

Name: Score:

Directions: This is a closed-book, closed notes test. Please answer in the space provided. You may not use
calculators, computers, etc.

1. (15 points) A graph G is drawn below. Label each vertex with its eccentricity.
State the radius and diameter of G. Indicate the center of G.

6 5 6
O———0 @]

5 4 5 6

—C ——0

4 3 4

S AN

G

5 4 5
Oo——©O O
Radius is 3.

Diameter is 6.
The center is the single shaded vertex with minimum eccentricity 3.

2. (15 points) Suppose k > 2. Prove that a k-regular bipartite graph has no cut-edge.

Proof. Suppose for the sake of contradiction that G is a k-regular bipartite graph (k > 2) with a cut edge
ab. When ab is removed from G, the component of G containing the edge ab splits into two new components;
call them A and B, with a € A and b € B. Both of these components are nontrivial, since their vertices have
degrees at least kK — 1 > 1. Now, the component A is bipartite (since it is a subgraph of a bipartite graph),
so there is a bipartition V(A) = X UY of A with each edge of A running between X and Y. Without loss of
generality, say a € Y. Then every vertex of X has degree k. By contrast every vertex of Y has degree k, except
for the vertex a, which has degree k — 1. Therefore, we can count the number of edges in A in two ways:

B = kX = k(Y]-1)+ (k1)
KX| = KY|-1
1 = k(Y- |x])
1
- = |Y|—-|X 7.
- = YI-IX|e

From the above, it follows that k£ = 1, contradicting the fact that & > 2. QED



3. (15 points) Let k > 2 be a fixed integer. Suppose a tree T has p vertices of degree k, and all the other vertices
of T have degree 1. Find n(T).

Proof. Sice T has p vertices of degree k and n(T) — p vertices of degree 1, we have

2AB(T) = ) d)

zeV(T)
= pk+(T)-p-1
= plk—1)+n(T).

But T is a tree, so |[E(T')| = n(T) — 1, and the above calculation yields

2(n(T)—1) = pk—1)+n(T)
n(T)—2 = plk—1)+n(T)
n(T) = pk—-1)+2

Therefore ‘ n(T)=plk—1)+2. ‘

4. (15 points) State the following theorems carefully and precisely.
(a) Berge’s Theorem
A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path)

(An M-augmenting path is a path which alternates between edges in M and not in M, and whose endpoints
are not saturated by M.)

(b) Hall’s Theorem:

Suppose G is a bipartite graph with bipartition V(G) = X UY.
Then G has a matching that saturates X if and only if |[N(S)| > |S]| for all S C X.

(Here N(S) denotes the set of all vertices of G which are adjacent to a vertex of S.)

(¢) The Konig-Egervary Theorem
For any bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.

(A vertex cover is a set Q C V(G) such that every edge of G has an endpoint in Q.)



5. (20 points) Find the listed invariants for the Petersen graph.
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6. (10 points) Prove that v < « for any graph.

Proof. Let I be a largest independent set in G, so |I| = a. Now, if x is any vertex of G, then either x € I, or
x is adjacent to a vertex in I. (If  were not adjacent to a vertex in I, then we could enlarge the independent
set I by appending x to it, but [ is already a largest independent set. Since every vertex of G is in either in
or adjacent to a vertex in I, it follows that I is a dominating set. Since « is the size of a smallest dominating

set, we have vy < I = a.

7. (10 points) Prove that x - @ > n for any graph.

(a) =4 ({2,0,8,9} is a maximum independent set.)
(b) y=3 ({3,5,6} is a minimum dominating set.)
(¢) &/ =5 ({05, 16,27, 38,49} is a perfect matching.)

(d) x =3 (x> 2 since P has 5-cycle; See 3-coloring on left.)

(e) w=2 (Petersen graph has K5’s but no Ks’s.)

QED

Proof. Consider a coloring of G with x colors {1,2,...,x}. For any color 4, the set X; of vertices with that
color is an independent set in G, and therefore | X;| < a. Therefore we have

This establishes x - a > n.

n

<

| X1+ [ Xo| + - 4+ | X
ata+--+«
X

QED



