Directions. Answer the questions in the space provided. This is a closed-notes, closed book exam; no calculators, no computers and no formula sheets. You have three hours.
(1) A classroom has 2 rows of 8 seats each. There are 14 students, 5 of whom always sit in the first row and 4 of whom always sit in the back row. In how many ways can the students be seated?
(2) (a) Find the coefficient of $x^{3} y^{2} z^{5}$ in $(x+y+z)^{10}$.
(b) Find the number of integer solutions of $x+y+z+w=30$ that satisfy $x \geqslant 2, y \geqslant 0, z \geqslant-8, w \geqslant 5$.
(3) There are 20 sticks lined up in a row occupying 20 distinct positions:
and six of them are to be chosen. How many choices are there if there must be at least two sticks between any pair of chosen sticks?
(4) Use a combinatorial argument to prove that $\sum_{k=0}^{n}\binom{a}{k}\binom{b}{n-k}=\binom{a+b}{n}$
for all positive integers a, b and n.
(5) Find and verify a formula for $\sum_{k, \ell \in m}\binom{a}{k}\binom{b}{\ell}\binom{c}{m}$.

$$
k+\ell+m=n
$$

[Suggestion: generalize your argument from question 4 on the previous page.]
(6) Find the number of integers between 1 and 10,000 (inclusive) which are not divisible by 4, 5, or 6 .
(7) Consider the multiset $X=\{\infty \cdot a, \infty \cdot b, \infty \cdot c, \infty \cdot d\}$. Let h_{n} be the number of n-combinations of X that have no more than $4 a^{\prime} s$, a multiple of $5 b^{\prime} s$, at least $5 c^{\prime} s$, and at least 2 d's.
(a) Find an ordinary generating function for h_{n}.
(b) Use your answer from part (a) to find a general formula for h_{n}.
(8) Let h_{n} be the number of n-digit numbers with all digits odd and no consecutive 3's. (By default, assume $h_{0}=1$.)
(a) Find a homogeneous recurrence relation for h_{n}.
(b) Solve the recurrence relation to find a general formula for h_{n}.
(9) Let h_{n} be the number of n-digit numbers with all digits odd and for which the digits 1 and 3 occur a positive even number of times.
(a) Find an exponential generating function for h_{n}.
(b) Use your answer from part (a) to find a general formula for h_{n}.
(10) The general term of a sequence $h_{0}, h_{1}, h_{2}, \ldots$ is a polynomial in n of degree 3 . The first four entries of the 0 th diagonal of its difference table are $1,-1,3,10$. Find the formula for h_{n}.

