quadrants (each quadrant is determined by prescribing signs to each of x_1, x_2, x_3). More generally, n-dimensional space is coordinatized by associating an n-tuple of numbers (x_1, x_2, \ldots, x_n) with each point. There are n coordinate planes, namely, those determined by $x_1 = 0$, $x_2 = 0, \ldots$, and $x_n = 0$. These planes divide n-dimensional space into the 2^n "quadrants" determined by prescribing signs to each of x_1, x_2, \ldots, x_n . One such quadrant is the so-called non-negative quadrant $x_1 \geq 0, x_2 \geq 0, \ldots, x_n \geq 0$.

8.5 Exercises

- 1. Let 2n (equally spaced) points be chosen on a circle. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number C_n .
- 2. Prove that the number of 2-by-n arrays

$$\left[\begin{array}{cccc} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \end{array}\right]$$

that can be made from the numbers $1, 2, \ldots, 2n$ so that

$$x_{11} < x_{12} < \cdots < x_{1n},$$

$$x_{21} < x_{22} < \dots < x_{2n}$$

and

$$x_{11} < x_{21}, x_{12} < x_{22}, \dots, x_{1n} < x_{2n},$$

equals the *n*th Catalan number, C_n .

- 3. Write out all the multiplication schemes for four numbers and the triangularization of a convex polygonal region of five sides corresponding to them.
- 4. Determine the triangularization of a convex polygonal region corresponding to the following multiplication schemes:
 - (a) $(a_1 \times (((a_2 \times a_3) \times (a_4 \times a_5)) \times a_6))$

(b)
$$(((a_1 \times a_2) \times (a_3 \times (a_4 \times a_5)) \times ((a_6 \times a_7) \times a_8)))$$

5. * Let m and n be non-negative integers with $n \ge m$. There are m+n people in line to get into a theatre for which admisssion is 50 cents. Of the m+n people, n have a 50 cents piece and m have a 1 dollar bill. The box office opens with an empty cash register. Show that the number of ways the people can line up so that change is available when needed is

$$\frac{n-m+1}{n+1}\binom{m+n}{m}.$$

(The case m = n is the case treated in section 8.1.)

- 6. Let the sequence $h_0, h_1, \ldots, h_n, \ldots$ be defined by $h_n = 2n^2 n + 3$, $(n \ge 0)$. Determine the difference table, and find a formula for $\sum_{k=0}^{n} h_k$.
- 7. The general term h_n of a sequence is a polynomial in n of degree 3. If the first four entries of the 0th row of its difference table are 1, -1, 3, 10, determine h_n and a formula for $\sum_{k=0}^{n} h_k$.
- 8. Find the sum of the fifth powers of the first n positive integers.
- 9. Prove the following formula for the kth-order differences of a sequence $h_0, h_1, \ldots, h_n, \ldots$:

$$\Delta^k h_n = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} h_{n+j}.$$

10. If h_n is a polynomial in n of degree m, prove that the constants c_0, c_1, \ldots, c_m such that

$$h_n = c_0 \binom{n}{0} + c_1 \binom{n}{1} + \dots + c_m \binom{n}{m}$$

are uniquely determined (cf. Theorem 8.2.2).

- 11. Compute the Stirling numbers of the second kind S(8, k), (k = 0, 1, ..., 8).
- 12. Prove that the Stirling numbers of the second kind satisfy the relations

(a)
$$S(n,1) = 1$$
, $(n > 1)$

Sec. 8.5: Exercises

- (b) $S(n,2) = 2^{n-1} 1$, $(n \ge 2)$
- (c) $S(n, n-1) = \binom{n}{2}, (n \ge 1)$
- (d) $S(n, n-2) = \binom{n}{3} + 3\binom{n}{4}$
- 13. Let X be an p-element set and let Y be a k-element set. Prove that the number of functions $f:X\to Y$ which map X onto Y equals

 $k!S(p,k) = S^{\#}(p,k).$

14. * Find and verify a general formula for

$$\sum_{k=0}^{n} k^{p}$$

involving Stirling numbers of the second kind.

15. The number of partitions of a set of n elements into k distinguishable boxes (some of which may be empty) is k^n . By counting in a different way prove that

$$k^{n} = \binom{k}{1} 1! S(n,1) + \binom{k}{2} 2! S(n,2) + \dots + \binom{k}{n} k! S(n,n).$$

(If k > n, define S(n, k) to be 0.)

- 16. Compute the Bell number B_8 (cf. Exercise 11).
- 17. Compute the triangle of Stirling numbers of the first kind s(n, k) up to n = 7.
- 18. Write $[n]_k$ as a polynomial in n for $k = 1, 2, \ldots, 7$.
- 19. Prove that the Stirling numbers of the first kind satisfy
 - (a) $s(n,1) = (n-1)!, (n \ge 1)$
 - (b) $s(n, n-1) = \binom{n}{2}, (n \ge 1)$
- 20. Verify that $[n]_n = n!$, and write n! as a polynomial in n using the Stirling numbers of the first kind. Do this explicitly for n = 6.
- 21. For each integer n = 1, 2, 3, 4, 5, construct the diagram of the

- 22. (a) Calculate p(6) and construct the diagram of the set \mathcal{P}_6 partially ordered by majorization.
 - (b) Calculate p(7) and construct the diagram of the set \mathcal{P}_7 partially ordered by majorization.
- 23. A total order on a finite set has a unique maximal element (a largest element) and a unique minimal element (a smallest element). What are the largest partition and smallest partition in the lexicographic order on $\mathcal{P}(n)$?
- 24. A partial order on a finite set may have many maximal elements and minimal elements. In the set \mathcal{P}_n of partitions of n partially ordered by majorization, prove that there is a unique maximal element and a unique minimal element.
- 25. Let t_1, t_2, \ldots, t_m be distinct positive integers, and let $q_n = q_n(t_1, t_2, \ldots, t_n)$ equal the number of partitions of n in which all parts are taken from t_1, t_2, \ldots, t_m . Define $q_0 = 1$. Show that the generating function for $q_0, q_1, \ldots, q_n, \ldots$ is

$$\prod_{k=1}^{m} (1 - x^{t_k})^{-1}$$

- 26. Determine the conjugate of each of the following partitions:
 - (a) 12 = 5 + 4 + 2 + 1
 - (b) 15 = 6 + 4 + 3 + 1 + 1
 - (c) 20 = 6 + 6 + 4 + 4
 - (d) 21 = 6 + 5 + 4 + 3 + 2 + 1
 - (e) 30 = 8 + 6 + 6 + 4 + 3 + 2
- 27. For each integer n > 2, determine a self-conjugate partition of n that has at least two parts.
- 28. Prove that conjugation reverses the order of majorization; that is, if λ and μ are partitions of n and λ is majorized by μ , then μ^* is majorized by λ^* .
- 29. Evaluate $h_{k-1}^{(k)}$, the number of regions into which k-dimensional space is partitioned by k-1 hyperplanes in general position.