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1. At # A (and thus |A*] < |A|) since there is a minimal element
not in A;

2. A~ # A (and thus |A~| < |A|) since there is a maximal element
not in A;

3. AtNA~ = A since if there were an element z in AT NA™ not in
A, then we would have a1 < z < ay for some elements a; and
as in A, contradicting the assumption that A is an antichain;

4. At UA~ = X since if there were an element x not in AT U A~
AU {z} would be an antichain of larger size than A.

We apply the induction assumption to the smaller partially ordered
sets AT and A~ and conclude that AT can be partitioned into m
chains Ei, Es,...,E,,, and A~ can be partitioned into m chains
F, F,, ..., Fy,. The clements of A are the maximal elements of A~
and so the last elements on the chains Fy, Fy, ..., Fpp; the elements
of A are also the minimal elements of AT and so the first elements
on the chains Ey, Es, ..., Fyp,. We “glue” the chains together in pairs
to form m chains which partition X.

Case 2. There are at most two antichains of size m, one or both of
the set of all maximal elements and the set of all minimal elements.
Let & be a minimal element and y a maximal element with z < y
(z may equal y). Then the largest size of an antichain of X — {z,y}
is m-1. By the induction hypothesis, X — {z,y} can be partitioned
into m — 1 chains. These chains together with the chain z <y gives
a partition of X into m chains. O

5.8 Exercises

1. Prove Pascal’s formula by substituting the values of the bino-
mial coefficients as given in equation (5.1).

2. Fill in the rows of Pascal’s triangle corresponding to n = 9 and
10.

3. Consider the sum of the binomial coeflicients along the diag-
onals of Pascal’s triangle running upward from the left. The
first few are: 1,1,14+1=2,142=3,14+3+1=05,1+4+43 =8.
Compute several more of these diagonal sums, and determine
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how these sums are related. (Compare them with the values of
the counting function f in Exercise 4 of Chapter 1.)

. Expand (z + y)® and (z + )%, using the binomial theorem.
_ Expand (22 — y)7, using the binomial theorem.

. What is the coefficient of z°y'? in the expansion of (3z — 2y)18?

What is the coefficient of z8¢y°? (There is not a misprint in this
last question!)

. Use the binomial theorem to prove that

3" = znj <Z>2k'

k=0
Generalize to find the sum
" In
k=0

for any real number r.

. Use the binomial theorem to prove that

on — Z(_l)k <k> 371—19_

. Evaluate the sum

z":(_l)k<z> 10,

k=0

Use combinatorial reasoning to prove the identity (5.2). (Hint:
Think of choosing a team with one person designated as cap-
tain.)

Use combinatorial reasoning to prove the identity (in the form
given)

6)-0)-62D)6+62)

(Hint: Let S be a set with three distinguished elements a, b,
and c¢ and count certain k-combinations of S.)
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12. Let n be a positive integer. Prove that
n n\* [0 if n is odd
Z(_l)k = m(2m : = 29m.
= k (~n™)  ifn=2m

13. Find one binomial coefficient equal to the following expression
n n n n
s ,
14. Prove that
T T r—1
() -7

for r a real number and k an integer with r # k.

15. Prove that for every integer n > 1

() -(5) o) +-ovm(e) -

16. By integrating the binomial expansion, prove that for a positive
integer n,

1/{n 1/n 1 T _21:.-}-I_|
ot Tsle) T T aviln) Tt

17. Prove the identity in the previous exercise by using (5.2) and
(56.3).

18. Evaluate the sum

1({n 1({n 1(n B nl_ my
1‘§<1>+§<2>'Z(3>+'”+( Y ”+1<”>

19. Sum the series 12 4+ 22 4 3% 4 --- + n? by observing that

{30

and using the identity (5.14).
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20. Find integers a, b, and c such that

o)) (1)

for all m. Then sum the series 1% 4+ 23 + 33 + ... &+ 3,

21. Prove that for all real numbers r and all integers k,

(¥) =)

22. Prove that for all real numbers r and all integers &k and m,

r\{m\ [r\{r—k
mi\k] \k/\m—k/
23. Every day a student walks from her home to school, which is

located 10 blocks east and 14 blocks north from home. She
always takes a shortest walk of 24 blocks.

(a) How many different walks are possible?

(b) Suppose that 4 blocks east and 5 blocks north of her home
lives her best friend, whom she meets each day on her way
to school. Now how many different walks are possible?

(c) Suppose, in addition, that 3 blocks east and 6 blocks north
of her friend’s house there is a park where the two girls

stop each day to rest and play. Now how many different
walks are there?

(d) Stopping at a park to rest and play, the two students often
get to school late. To avoid the temptation of the park, our
two students decide never to pass the intersection where
the park is. Now how many different walks are there?

24. Consider a three-dimensional grid whose dimensions are 10 by
15 by 20. You are at the front lower left corner of the grid and
wish to get to the back upper right corner 45 “blocks” away.

How many different routes are there in which you walk exactly
45 blocks?
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95. Use a combinatorial argument, to prove the Vandermonde con-
volution for the binomial coefficients: for all positive integers

m, me, and n,

E0)6m)- ()

Deduce the identity (5.11) as a special case.

26. Find and prove a formula for

r,s,t >0
r+s+t=n

where the summation extends over all nonnegative integers 7, s
and t with sum r + s+t =mn.

97. Prove that the only clutter of S = {1,2,3,4} of size 6 is the
clutter of all 2-combinations of S.

98. Prove that there are only two clutters of § = {1,2,3,4,5}
of size 10 (10 is maximum by Sperner’s Theorem), namely,
the clutter of all 2-combinations of S and the clutter of all
3-combinations. l

99. * Let S be a set of n elements. Prove that if n is even, the only
clutter of size (Lg J) is the clutter of all §-combinations; if n is
odd, prove that the only clutters of this size are the clutter of
all "—2—‘1-combinations and the clutter of all I“{—1—combinat'101rls.

30. Construct a partition of the combinations of {1,2, 3,4,5} into
symmetric chains.

31. In a partition of the combinations of {1,2,...,n} into sym-
metric chains, how many chains have only one combination in
them? two combinations? k combinations?

32. A talk show host has just bought 10 new jokes. Each night he
tells some of the jokes. What is the largest number of nights on
which you can tune in so that you never hear on one night at
least all the jokes you heard on one of the other nights? (Thus,
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for in‘stance, it is acceptable that you hear jokes 1, 2, and 3 on
one night, jokes 3 and 4 on another, and jokes 1, 2, and 4 on a
third. It is not acceptable that you hear jokes 1 and 2 on one
night and joke 2 on another night.) |

Prove the identity of Exercise 23, using the binomial theorem
and the relation (1 4 )™ (1 + z)™2 = (1 4 g)m+m2,

Use the multinomial theorem to show that for positive integers ‘|
l

n and ¢
i = i

Wherfe the summation extends over all non-negative integral |
solutions ny,ny,...,nt of ny +ng + -+ +ny = n. |

Use the multinomial theorem to expand (1 + 29 + :U3)4.
Determine the coefficient of z3z,2322 in the expansion of
(ml + 2o+ 3+ 24 + 5175)10.
What is the coefficient of z3z3z327 in the expansion of
(3)1 — T + 223 — 2:134)9?
Expand (z; + 2z + z3)™ by observing that
(1 + 22 + 23)" = (21 + 32) + 73)"
and then using the binomial theorem.

PI‘OV(? the identity (5.16) by a combinatorial argument. (Hint:
Consider the permutations of a multiset of objects of ¢ differ-
ent types with repetition numbers ny,no,..., ny, respectively.

.Pa.rtition these permutations according to what type of object
Is in the first position.)

Prove by induction on n that, for n a positive integer, .'.

1 o=~ [n+k~—1 |
WZZ< k )Zk’ 2] & L

k=0
Assume the validity of




=

1568
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45. Consider the partially ordered set
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Use Newton’s binomial theorem to approximate v/30.

: 1/3
Use Newton’s binomial theorem to approximate 10173,

Use Theorem 5.7.1 to show that if m and n are positive integers,
then a partially ordered set of mn + 1 elements has a chain of
size m -+ 1 or an antichain of size n + 1.

Use the result of the previons exercise to show thal a sequence

of mmn -+ 1 real numbers either contains an increasing subse-
quence of m+ 1 numbers or a decreasing subsequence of 7+ 1
numbers (see Application 9 of section 2:2)

({1,2,...,12},]) of the first
g Mol "
12 positive integers partially ordered by “is divisible by.

(a) Determine a chain of largest size and a partition of {1,2,...,12}
into the smallest number of antichains.

(b) Determine an antichain of largest size and a Partition of
{1,2,...,12} into the smallest number of chains.

Chapter 6

The Inclusion-Exclusion
Principle and Applications

In this chapter we derive and apply an important counting formula
called the inclusion-exclusion principle. Recall that the addition prin-
ciple gives a simple formula for counting the number of objects in a
union of sets, provided the sets do not overlap, that is, provided the
sets determine a partition. The inclusion-exclusion principle gives
a formula for the most general of circumstances where the sets are
free to overlap without restriction. The formula is necessarily more
complicated but, as a result, is more widely applicable.

6.1 The Inclusion-Exclusion Principle °

In Chapter 3 we have seen several examples where it is easier to make
an indirect count of the number of objects in a set rather than to
count the objects directly. Two more examples are the following.

Example. Count the permutations 41%...4, of {1,2,...,n} in
which 1 is not in the first position (that is, 4, # 1).

We could make a direct count by observing that the permu-
tations with 1 not in the first position can be divided into n — 1
parts according to which of the n — 1 integers k from {2,3,...,n}
is in the first position. A permutation with & in the first position
consists of k followed by a permutation of the (n — 1)-element set
{L,...,k—1,k+1,...,n}. Hence there are (n — 1)! permutations of
{1,2,...,n} with k in the first position. By the addition principle



