
Abstract Algebra FINAL EXAM May 23, 2003

Name: R. Hammack Score:

Directions: Please answer the questions in the space provided. To get full credit you must show all of your work.
Use of calculators and other computing or communication devices is not allowed on this test.

1. Draw the subgroup lattice for Z18.

Z18

↙ ↘
〈2〉 〈3〉

↘ ↙ ↘
〈6〉 〈9〉

↘ ↙
〈0〉

2. List the elements of the cyclic subgroup 〈-i〉 of C∗. Answer: 1,−i,−1, i

3. Find the order of the largest cyclic subgroup of the symmetric group S10.
Consider the element (1,2,3,4,5)(6,7,8)(9,10).
It has order (5)(3)(2) = 30, so the subgroup generated by it has 30 elements.
Can you do better than this? Any permutation in S10 can be written as a product of disjoint cycles, and
its order is at most the sum of the lengths of the cycles. A quick exhaustive search confrims that the above
element has the greatest possible order.



4. Consider the set H = {σ∈S5 | σ(3)=3}.

(a) |H| = 4! = 242424

(b) Explain why H is a subgroup of S5.

Note that
1. H is closed. If π, µ∈ H, then π(3)= 3 and µ(3)= 3. Thus πµ(3) = π(µ(3)) = π(3) = 3, so πµ∈ H.
2. The identity permutatio i is in H because i(3) = 3.
3. If µ ∈ H, then 3 = µ(3) , so µ−1(3) =µ−1µ((3))= 3 , which means µ−1 is in H.
It follows that H is a subgroup.

(c) Is H a normal subgroup of S5? Explain.

NO.
For example, look at the cycle (1,2,4), which is in H because it leaves 3 unchanged.
Cosnsider the permutation (1,3) which is its own inverse.
Notice that (1,3)(1,2,4)(1,3) is NOT in H because it sends 3 to 2.
This shows that its not true that g−1hg is H for every element h in H, so H is not normal.

(d) How many left cosets of H are there in S5?

There are |S5|/| H | = 120/24 = 5 such cosets.

5. List all the nonisomorphic groups of order 180.

180 = 22325

Z4 × Z9 × Z5

Z2 × Z2 × Z9 × Z5

Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z3 × Z3 × Z5

6. Find the order of (3,6,9) in Z4×Z12×Z15.

Look at n(3, 6, 9) = (n3, n6, n9), where n is an integer.
n must be a multible of 4 to make n3 = 0
n must be a multible of 2 to make n6 = 0
n must be a multible of 5 to make n9 = 0

The least common multiple is 20, so that is the order of (3, 6, 9).



7. Are the groups Z8×Z10×Z3 and Z8×Z2×Z15 isomorphic? Why or why not?

Z8×Z10×Z3= Z8×Z30 (since 3 and 10 are relatively prime)
Z8×Z2×Z15= Z8×Z30 (since 2 and 15 are relatively prime)
Therefore the two groups are isomorphic.

8. Find the kernel of the homomorphism φ:Z→Z8 for which φ(1)=6.

Note φ(n) = φ(1 + 1 + ... + 1) = φ(1) + φ(1) + .. + φ(1) = 6 + 6 + ... + 6 = 6n (mod 8)
Thus the kernel will be all integers n for which 6n = (3)(2)n is a multiple of 8.
Such an n must be a multiple of 4.
Thus kernel is 4Z.

9. Find the kernel of the homomorphism φ:Z40→Z5×Z8 for which φ(1)=(1,4).

Note φ(n) = φ(1 + 1 + ... + 1) = φ(1) + φ(1) + .. + φ(1) = n(1, 4) = (n, 4n)
For this equal (0,0), n must be a multiple of 5 and 4n must be a multiple of 8.
It follows that the kernel is {0, 10, 20, 30}

10. (a) List the units in the ring Z12.

1, 5, 7, 11

(b) List the zero divisors in the ring Z12.

2, 3, 4, 6, 8, 9, 10

(c) List the prime ideals in the ring Z12.

Recall that an ideal N is prime if and olly if Z12/N is an integral domain.
The ideals in this ring are 〈0〉, 〈1〉 = 〈5〉 = 〈7〉 = 〈11〉, 〈2〉 = 〈10〉, 〈3〉 = 〈9〉, 〈6〉, 〈4〉 = 〈8〉.

Z12/〈0〉 ∼= Z12 is not an integral domain so 〈0〉 is not prime.
Z12/〈1〉 ∼= {0} is not an integral domain so 〈1〉 is not prime.
Z12/〈2〉 ∼= Z2 is an integral domain so 〈2〉 is prime.
Z12/〈3〉 ∼= Z4 is not an integral domain so 〈3〉 is not prime.
Z12/〈4〉 ∼= Z3 is an integral domain so 〈4〉 is prime.
Z12/〈6〉 ∼= Z6 is not an integral domain so 〈6〉 is not prime.

Prime ideals are 〈2〉 and 〈4〉.



11. What familiar group is (Z4×Z6)/〈 (2,3) 〉 isomorphic to?

Note H = 〈(2, 3)〉 = {(0,0), (2,3)} has just 2 elements.
It follows that the factor group has (4)(6)/2 = 12 elements.
We claim that the factor group is generated by the element (1, 1)+ H.
0((1, 1)+ H ) = (0, 0)+ H
1((1, 1)+ H ) = (1, 1)+ H
2((1, 1)+ H ) = (2, 2)+ H
3((1, 1)+ H ) = (3, 3)+ H
4((1, 1)+ H ) = (0, 4)+ H
5((1, 1)+ H ) = (1, 5)+ H
6((1, 1)+ H ) = (2, 0)+ H
7((1, 1)+ H ) = (3, 1)+ H
8((1, 1)+ H ) = (0, 2)+ H
9((1, 1)+ H ) = (1, 3)+ H
10((1, 1)+ H ) = (2, 4)+ H
11((1, 1)+ H ) = (3, 5)+ H
12((1, 1)+ H ) = (0, 0)+ H <—— finally "cycles" back to the identity here.

Thus (1, 1)+ H generates the entire group. Group is cyclic with 12 elements. It’s Z12.

12. Explain why C∗/U'R+.

Consider the function φ : C∗ → R+, given by φ(z) = |z|.
This is a homomorphism becuase φ(zw) = |zw| = |z||w| = φ(z)φ(w).
It’s surjective because given any x in R+, φ(x) = x.
Also, its Kernel is {z ∈ C∗ : φ(z) = 1} = {z ∈ C∗ : |z| = 1} = U .
By the Fundamental Theorem of Homomorphisms, there is an isomorphism µ : C∗/U → R+.

13. Is 2x3+x2+ 2x +2 an irreducible polynomial in Z5[x]? If not, write it as a product of irreducible polynomials.

Let f(x) =2x3+x2+ 2x +2.
If this factored, then it would factor into a linear and a quadratic term, or 3 linear terms.
Either way, there would be a linear term, so the polynomial would have a root.
But a quick check shows there are no roots:
f (0) = 2
f (1) = 2
f (2) = 1
f (3) = 1
f (4) = 4
Conclusion. It can’t be factored. It’s irreducible.



14. Find all c ∈Z3 for which Z3[x]/〈 x2+c 〉 is a field.

These would be all the elements c for which the ideal 〈x2 + c〉 is maximal,
which in turn is all elements c for which x2+c is irrecucible.
If c = 0, the polynomial is x2= (x)(x) which is not irreducible.
If c = 1, the polynomial is x2+1, and its of degree 2 with no roots, so its irreducible.
If c = 2, the polynomial is x2+2, and its of degree 2 with no roots, so its irreducible.

ANSWER: c = 1 and c = 2.

15. Prove that if G is a finite group with identity e, and m = |G|, then xm = e for any element x ∈ G.

Proof. Take any x in G and consider the cyclic subgroup 〈x〉.
Let’s say k = |〈x〉|, which means 〈x〉 = {e, x, x2, x3, x4, · · · , xk−1}, so xk = e.
Lagrange’s Theorem says k divides m, so m = kn for some integer n.
Now, xm = xkn =

(
xk

)n = en = e.

16. Suppose that G is a group with identity e. Prove that if x2 = e for every element x in G, then G is abelian.

Proof.
Suppose a and b are arbitrary elements of G.
We want to show ab = ba.
By hypothesis, (ab)2 = abab = e.
Multiply both sides of abab = e on the left by a and you get aabab = a.
But, since aa= e, this becomes bab = a.
Now multiply both sides of bab = a on the right by b to get babb = ab.
But since bb = e this becomes ba = ab.
Therefore G is abelian.



17. Prove that if G is an abelian group, then the set of all elements x ∈ G for which x2 = e form a subgroup of G.

Proof. Let H = {x ∈ G|x2 = e}. We must show this is a subgroup of G.
Notice that:
1. H is closed. If a, b ∈ H, then a2 = e and b2 = e, so (ab)2 = abab = aabb = a2b2 = ee = e, so ab is in H.
2. The identity e is in H because e2 = e.
3. If a is in H, then a2 = e so

(
a2

)−1=e−1 , which is a−2 = e, or
(
a−1

)2 = e. This means a−1 is in H.

18. Prove that the units of a ring with unity form a multiplicative group.

Proof. Suppose R is a ring with unity and M⊂R is the set of all its units.
Notice that M is closed under multiplication, for if a and b are in M then ab is a unit with inverse b−1a−1.
Thus ring multiplication gives a binary operation on M.
We now just need to show the 3 group axioms hold for multiplication in M.
1. Multiplication is assosiative because it’s assosiative in the ring R.
2. Unity 1 is in M because it’s a unit, and this serves as the identity.
3. If a is in M, then a is a unit and so is its inverse because aa−1 = 1, so a−1 is in M.
We’re done.


