\qquad
Directions: Answer each question in the space provided. Use of any electronic device (calculators, i-pods, etc.) is not allowed during this test.

1. (30 points) Short Answer. You do not need to show your work for problems on this page.

(b) Write a multiplication table for $U(12)$. \qquad

\cdot	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

(c) $\left|A_{n}\right|=\ldots \ldots \cdot \frac{n!}{\frac{n!}{2}}$
(d) A group has 45 elements. What are the possible orders of its subgroups? $1,3,5,9,15,45$
(e) Suppose a is a generator of a cyclic group G. Give a generator for the subgroup $\left\langle a^{m}\right\rangle \cap\left\langle a^{n}\right\rangle \ldots \ldots . a^{\operatorname{lcm}(m, n)}$
(f) Give an example of a nontrivial abelian subgroup of a non-abelian group. $A_{3} \subseteq S_{3}$
(g) Write $\mu=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 6 & 7 & 2 & 4 & 3\end{array}\right) \in S_{7}$ as a product of disjoint cycles. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
(h) Is the permutation μ from part (h) even or odd? Odd because (152) is even and (3647) is odd.
(i) Find the order of the permutation μ from part (h).
$\operatorname{lcm}(3,4)=12$
(j) Write the following as a product of disjoint cycles: $(215)(3142)^{-1}$
$(13)(245)$
2. (10 points) List the left cosets of the subgroup $H=\{(1),(13)\}$ of S_{3}.

$$
\begin{aligned}
(1) H & =\{(1),(13)\} \\
(12) H & =\{(12),(321)\} \\
(23) H & =\{(23),(123)\}
\end{aligned}
$$

3. (10 points) Find all possible orders of elements in S_{7}.

In the table below, examples of permutations (as cycles or products of disjoint cycles) in S_{7} are paired with their orders.

Permutation	order
(1)	1
(12)	2
(123)	3
(1234)	4
(12345)	5
(123456)	6
(1234567)	7
(12)(34567)	$\operatorname{lcm}(2,5)=10$
(123)(4567)	$\operatorname{lcm}(3,4)=12$

In trying other combinations of disjoint cycles, we quickly see that the above table captures all possible orders. For example, $(12)(3458)$ has order $\operatorname{gcd}(2,4)=4$, and this order already appears on the table, etc.

Thus the possible orders are $1,2,3,4,5,6,7,10$ and 12 .
4. (10 points) Prove that if a group G has no proper nontrivial subgroups, then G is cyclic.

Proof. Suppose G has no proper nontrivial subgroups. Take an element $a \in G$ for which $a \neq e$. Consider the cyclic subgroup $\langle a\rangle$. This subgroup contains at least e and a, so it is not trivial. But G has no proper subgroups, so it must be that $\langle a\rangle=G$. Thus G is cyclic, by definition of a cyclic group.
5. (10 points) Suppose a group G has the property that $a^{2}=e$ for every $a \in G$. Prove that G is abelian.

Proof. Suppose G has the property that $a^{2}=e$ for every $a \in G$. Take arbitrary elements $x, y \in G$. By assumption we have $(x y)^{2}=e$. We work with this as follows.

$$
\begin{aligned}
(x y)^{2} & =e \\
x y x y & =e \\
x(x y x y) & =x e \\
(x x)(y x y) & =x \\
e(y x y) & =x \\
y x y & =x \\
(y x y) y & =x y \\
(y x)(y y) & =x y \\
(y x) e & =x y \\
y x & =x y
\end{aligned}
$$

This establishes $x y=y x$, so G is abelian.
6. (10 points) Let g be an element of a group G, and define a map $\lambda_{g}: G \rightarrow G$ as $\lambda_{g}(x)=g x$.

Show that λ_{g} is a permutation of G.
Proof. By definition, a permutation of G is just a bijection $G \rightarrow G$. Thus we only need to show that λ_{g} is bijective.
First we show λ_{g} is injective. Suppose $\lambda_{g}(x)=\lambda_{g}(y)$. This means $g x=g y$. Multiplying both sides by g^{-1} gives $x=y$. It follows that λ_{g} is injective.

Next let's show that λ_{g} is surjective. Take an arbitrary $a \in G$. Now, since $g \in G$, we must also have $g^{-1} \in G$, hence $g^{-1} a \in G$. Now observe that $\lambda_{g}\left(g^{-1} a\right)=g g^{-1} a=a$. Thus λ_{g} is surjective.

Since it is both injective and surjective, λ_{g} is bijective, and therefore it's a permutation of G.
7. (10 points) Let G be an abelian group. Show that the set of elements of finite order in G form a subgroup.

Proof. Let $H=\{a: a \in G$ and a has finite order $\} \subseteq G$. We need to show that H is a subgroup of G.

1. Since $e^{1}=e$, the identity e has (finite) order 1 , so $e \in H$.
2. Suppose $a, b \in H$. This means a and b have finite orders, say m and n, respectively. Therefore $a^{m}=e$ and $b^{n}=e$. Now consider the product $a b$. Using the usual laws of exponents and the fact that G is abelian, we get

$$
(a b)^{m n}=\underbrace{(a b)(a b) \cdots(a b)}_{m n \text { times }}=\underbrace{a a a \cdots a}_{m n} \underbrace{b b b \cdots b}_{m n}=a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=e^{n} e^{m}=e
$$

Therefore $(a b)^{m n}=e$, so $a b$ has finite order, and is therefore in H. This proves that H is closed under multiplication.
3. Suppose $a \in H$, so a has finite order; say $a^{m}=e$. Then

$$
\left(a^{-1}\right)^{m}=a^{-m}=\left(a^{m}\right)^{-1}=e^{-1}=e
$$

which means a^{-1} has finite order. Thus $a^{-1} \in H$, so H is closed with respect to taking inverses.
The above considerations show that H satisfies the conditions of Theorem 3.9, so H is a subgroup of G.
8. (10 points) Suppose H is a subgroup of a group G, and $[G: H]=2$.

Suppose also that a and b are in G, but not in H. Show that $a b \in H$.
Proof. Suppose $[G: H]=2$ and $a, b \notin H$. Now, since $a \notin H$, it follows that $a^{-1} \notin H$. (Otherwise, if a^{-1} were in H, its inverse a would be in H, and this is not the case.)

Since neither a^{-1} nor b is in H, we know that $a^{-1} H \neq H$ and $b H \neq H$.
But since $[G: H]=2$, we know that H has only two left cosets in G. One of these cosets is H. By the previous paragraph, $a^{-1} H$ and $b H$ must both be equal to the coset that is not H, and therefore $a^{-1} H=b H$.

Now, consider an arbitrary element of $a^{-1} H$, which has form $a^{-1} h$ for some $h \in H$. Since this is also an element of $b H$, it must also equal $b h^{\prime}$ for some $h^{\prime} \in H$. Therefore we have

$$
a^{-1} h=b h^{\prime}
$$

Multiply both sides of this by a (on the left) to get $h=a b h^{\prime}$. Now multiply both sides by the inverse of h^{\prime} (on the right) to get

$$
a b=h\left(h^{\prime}\right)^{-1} \in H
$$

This completes the proof.

