MATH 501 R. Hammack Name ______ **Directions:** Answer each question in the space provided. Use of any electronic device (calculators, i-pods, etc.) is not allowed during this test. - 1. (30 points) Short Answer. You do not need to show your work for problems on this page. - (a) List the generators of \mathbb{Z}_{12} . (c) $$|A_n| =$$ - (d) A group has 45 elements. What are the possible orders of its subgroups? - (e) Suppose a is a generator of a cyclic group G. Give a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$. - (f) Give an example of a nontrivial abelian subgroup of a non-abelian group. - (g) Write $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 6 & 7 & 2 & 4 & 3 \end{pmatrix} \in S_7$ as a product of disjoint cycles. - (h) Is the permutation μ from part (g) even or odd? - (i) Find the order of the permutation μ from part (g). - (j) Write the following as a product of disjoint cycles: $(215)(3142)^{-1}$ | 2. | (10 points) List the left cosets of the subgroup $H = \{(1), (13)\}$ of S_3 . | |----|---| | | | | | | | | | | 3. | (10 points) Find all possible orders of elements in S_7 . | | | | | | | | | | | | | | | | | 4. | (10 points) Prove that if a group G has no proper nontrivial subgroups, then G is cyclic. | 5. (10 points) Suppose a group G has the property that $a^2 = e$ for every $a \in G$. Prove | that G is abelian. | |--|----------------------| | o. (16 points) suppose a group of has the property that a second of order as constitution | that a is aschair. | 6. (10 points) Let g be an element of a group G, and define a map $\lambda_g: G \to G$ as $\lambda_g(x) = gx$. Show that λ_g is a permutation of the set G. | 7. | (10 points) Let G be an abelian group. Show that the set of elements of finite order in G form a subgroup. | |----|---| 8. | (10 points) Suppose H is a subgroup of a group G , and $[G:H]=2$. Suppose also that a and b are in G , but not in H . Show that $ab \in H$. |