Abstract Algebra	Test $\#1$	October 2, 2006	
Name:	R. Hammack	Score:	

Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and other computing or communication devices is **not** allowed on this test.

1. (12 points) Here is a partial table for a **commutative** and **associative** binary operation on a set $S = \{a, b, c, d\}$.

*	a	b	c	d
a	d	c		
b		d		
c		a		
d				

Supply the following information.

- (a) b * a = a * b = c
- (b) b * c = c * b = a
- (c) d * a = (b * b) * a = b * (b * a) = b * c = a
- (d) d * c = (b * b) * c = b * (b * c) = b * a = c
- 2. (18 points) For each of the following binary structures, say which are groups and which are not. If a structure is not a group, state which (if any) of the group axioms \mathscr{G}_1 , \mathscr{G}_2 , or \mathscr{G}_3 fail.
 - (a) $\langle \mathbb{Z}_5, +_5 \rangle$ Group
 - (b) $\langle \mathbb{Q}^*, \div \rangle$ Not a group; $\mathscr{G}_1, \mathscr{G}_2, \mathscr{G}_3$ all fail.
 - (c) $\langle \mathbb{Q}, + \rangle$ Group
 - (d) $\langle \mathbb{Z}^*, \cdot \rangle$ Not a group; \mathscr{G}_3 fails.
 - (e) $\langle U, \cdot \rangle$ Group
 - (f) $\langle 3\mathbb{Z}, + \rangle$ Group
 - (g) The set of all one-to-one and onto functions $f : \mathbb{R} \to \mathbb{R}$ under the binary operation of function composition. Group
 - (h) $M_{3\times 3}(\mathbb{R})$ under matrix multiplication. Not a group; \mathscr{G}_3 fails.
 - (i) $M_{3\times 3}(\mathbb{R})$ under matrix addition. Group

3. (10 points) Draw the subgroup lattice for \mathbb{Z}_{18} .

4. (5 points) List the generators of \mathbb{Z}_{18} .

```
Generators: 1, 5, 7, 11, 13, 17
```

5. (5 points) List the elements of the subgroup (12, 9) of \mathbb{Z}_{18} .

 $\{0, 3, 6, 9, 12, 15\}$

6. (5 points) Suppose $\varphi : \mathbb{Z}_8 \to U_8$ is an isomorphism satisfying $\varphi(3) = \frac{1+i}{\sqrt{2}}$. Find $\varphi(6)$.

$$\varphi(6) = \varphi(3+3) = \varphi(3) \cdot \varphi(3) = \frac{1+i}{\sqrt{2}} \cdot \frac{1+i}{\sqrt{2}} = \frac{1+i+i-1}{2} = \boxed{i}$$

7. (5 points) Suppose H is a proper subgroup of G. (Proper means $H \subseteq G$ but $H \neq G$.) Is it possible that $H \cong G$? If this is possible, give an example of such a G and H. If it's not possible, say why.

Yes this is quite possible. Consider $H = 2\mathbb{Z}$ and $G = \mathbb{Z}$ and note that H is a proper subgroup of G. Also, $H \cong G$, for the function $\varphi : G \to H$ defined as $\varphi(n) = 2n$ is an isomorphism: It's one-to-one, for if $\varphi(m) = \varphi(n)$, then 2m = 2n, so m = n. It's onto, for if $y \in H$, then y = 2k for some $k \in \mathbb{Z}$, and $\varphi(k) = 2k = y$. Finally, note that $\varphi(m + n) = 2(m + n) = 2m + 2n = \varphi(m) + \varphi(n)$, so the homomorphism property holds. 8. (10 points) Suppose K is a subgroup of an abelian group G. Show that the set $H = \{x \in G \mid x^2 \in K\}$ is a subgroup of G.

Proof. We make the following observations:

- (a) First we show H is closed. Suppose $a, b \in H$, which means $a^2 = e$ and $b^2 = e$. Using this with the fact that G is abelian we get $(ab)^2 = (ab)(ab) = abab = aabb = a^2b^2 = ee = e$. Now, the fact that $(ab)^2 = e$ means $ab \in H$, so H is closed.
- (b) Observe $e \in H$ because $e^2 = e$ means e satisfies the requirement for being in H.
- (c) Suppose $a \in H$. This means $a^2 = e$, or aa = e. Thus $a^{-1} = a \in H$.

Considerations (a), (b) and (c) above show that H is a subgroup.

9. (10 points) Suppose a nonempty finite subset H of a group G is closed under the binary operation of G. Prove that H is a subgroup of G.

Proof. We are given that H is closed, so we do not need to prove that particular condition for H being a subgroup.

Next we show $e \in H$. Suppose |H| = m. Since H is nonempty, there is some element $a \in H$. Consider the list $a^1, a^2, a^3 \dots a^{m+1}$. Since H is closed, each element on this list is in H. Also since the length of the list is one more than |H|, the list has at least one repeated item. Thus $a^r = a^s$ for some integers r and s with $1 \leq r < s \leq m+1$. Multiplying both sides of this equation by a^{-r} gives $e = a^{s-r}$. Consequently, the (s-r)th element of the list is e, which means $e \in H$.

Suppose a is an arbitrary element of H. The above paragraph shows that there is a positive integer k with $a^k = e$. Then $aa^{k-1} = e$, so $a^{-1} = a^{k-1}$. But $a^{k-1} \in H$ because $a \in H$ and H is closed. Therefore $a^{-1} \in H$.

The previous three paragraphs show that H is a subgroup of G.

10. (10 points) Prove that if a group G is cyclic, then G is abelian.

Proof. Suppose G is cyclic, so $G = \langle a \rangle = \{a^n | n \in \mathbb{Z}\}$ for some $a \in G$. Therefore, given two arbitrary elements x and y of G, there are integers m and n with $x = a^m$ and $y = a^n$. Consequently $xy = a^m a^n = a^{m+n} = a^n a^m = yx$, which means G is abelian.

11. (10 points) Suppose g is one fixed element of a group G. Define the function $\varphi: G \to G$ as $\varphi(x) = gxg^{-1}$. Prove that φ is an isomorphism from G to itself.

Proof. First notice that φ is one-to-one: If $\varphi(x) = \varphi(y)$, then $gxg^{-1} = gyg^{-1}$. Left-multiplying both sides by g^{-1} gives $xg^{-1} = yg^{-1}$. Now right-multiplying both sides by g produces x = y. This shows φ is one-to-one.

Next observe that φ is onto, for if $y \in G$, let $x = g^{-1}yg$ (which is also in G). Observe $\varphi(x) = \varphi(g^{-1}yg) = gg^{-1}ygg^{-1} = y$, so φ is onto.

Finally, note that the homomorphism property holds: $\varphi(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = (gxg^{-1})(gyg^{-1}) = \varphi(x)\varphi(y).$

It follows that φ is an isomorphism.