Abstract Algebra

Test #1

Name: _

R. Hammack

Score: _____

Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and other computing or communication devices is **not** allowed on this test.

1. (12 points) Here is a partial table for a **commutative** and **associative** binary operation on a set $S = \{a, b, c, d\}$.

· -				
*	a	b	c	d
a	d	c		
b		d		
c		a		
d				

Supply the following information.

- (a) b * a =
- (b) b * c =
- (c) d * a =
- (d) $d \ast c =$
- 2. (18 points) For each of the following binary structures, say which are groups and which are not. If a structure is not a group, state which (if any) of the group axioms \mathscr{G}_1 , \mathscr{G}_2 , or \mathscr{G}_3 fail.
 - (a) $\langle \mathbb{Z}_5, +_5 \rangle$
 - (b) $\langle \mathbb{Q}^*, \div \rangle$
 - (c) $\langle \mathbb{Q}, + \rangle$
 - (d) $\langle \mathbb{Z}^*, \cdot \rangle$
 - (e) $\langle U, \cdot \rangle$
 - (f) $\langle 3\mathbb{Z}, + \rangle$
 - (g) The set of all one-to-one and onto functions $f : \mathbb{R} \to \mathbb{R}$ under the binary operation of function composition.
 - (h) $M_{3\times 3}(\mathbb{R})$ under matrix multiplication.
 - (i) $M_{3\times 3}(\mathbb{R})$ under matrix addition.

3. (10 points) Draw the subgroup lattice for \mathbb{Z}_{18} .

4. (5 points) List the generators of \mathbb{Z}_{18} .

5. (5 points) List the elements of the subgroup (12, 9) of \mathbb{Z}_{18} .

6. (5 points) Suppose $\varphi : \mathbb{Z}_8 \to U_8$ is an isomorphism satisfying $\varphi(3) = \frac{1+i}{\sqrt{2}}$. Find $\varphi(6)$.

7. (5 points) Suppose H is a proper subgroup of G. (Proper means $H \subseteq G$ but $H \neq G$.) Is it possible that $H \cong G$? If this is possible, give an example of such a G and H. If it's not possible, say why. 8. (10 points) Suppose K is a subgroup of an abelian group G. Show that the set $H = \{x \in G \mid x^2 \in K\}$ is a subgroup of G.

9. (10 points) Suppose a nonempty finite subset H of a group G is closed under the binary operation of G. Prove that H is a subgroup of G. 10. (10 points) Prove that if a group G is cyclic, then G is abelian.

11. (10 points) Suppose g is one fixed element of a group G. Define the function $\varphi: G \to G$ as $\varphi(x) = gxg^{-1}$. Prove that φ is an isomorphism from G to itself.