
MATH 501: Abstract Algebra Test#2 November 18, 2010

Name: R. Hammack Score:

Directions: This is a closed-book, closed-notes test. Please answer in the space provided. Explain your reasoning.
Use calculators, computers, etc, is not permitted on this test.

1. Find the order of (8, 8, 8) in Z10 × Z24 × Z80.

The order of 8 in Z10 is 5.
The order of 8 in Z24 is 3.
The order of 8 in Z80 is 10.

Thus the order of (8, 8, 8) in Z10 × Z24 × Z80 is lcm(5, 3, 10) = 30.

2. Prove or disprove: Z ∼= Q.

This is false. To see why, note that Z = 〈1〉 is cyclic.

But Q is not cyclic, because if a is any element of Q, then 〈a〉 = {ka : k ∈ Z}.
This set is all integer multiples of a. It cannot possibly equal all of Q because, for instance, a

2 /∈ 〈a〉.
Since Z is cyclic but Q is not, we have Z 6∼= Q.

3. Suppose H is a normal subgroup of a group G. Prove or disprove:
If H and G/H are both abelian, then G is also abelian.

This is false, as the following counterexample shows:
Consider G = S3 and H = A3. Then G is non-ablelian.
But the subgroup H = A3 of G is abelian, as A3

∼= Z3.

Moreover, A3 is normal in S3 as follows: The set A3 is by definition the set of even permutations in S3. It
follows that for any permutation σ ∈ S3, any permutation in σA3σ

−1 is also even, for such a permutation has
the form σασ−1. Since σ and σ−1 are either both even or both odd, and α is even, it follows that σασ−1 is
even. Thus σA3σ

−1 is a set of even permutations in S3, that is so σA3σ
−1 ⊆ A3.This implies that A3 is normal.

Now, since |S3| = 6 and |A3| = 3, we have |G/H| = |S3/A3| = 6/3 = 2.
Since G/H has just two elements, it is isomorphic to Z2, and it thus abelian.

4. List all abelian groups of order 360, up to isomorphism.

Note 360 = 23 · 32 · 5. By the fundamental theorem of abelian groups, the possibilities are:

Z8 × Z9 × Z5

Z4 × Z2 × Z9 × Z5

Z2 × Z2 × Z2 × Z9 × Z5

Z8 × Z3 × Z3 × Z5

Z4 × Z2 × Z3 × Z3 × Z5

Z2 × Z2 × Z2 × Z3 × Z3 × Z5



5. Suppose R and S are rings with multiplicative identities 1R ∈ R and 1S ∈ S.
Prove that if ϕ : R→ S is a surjective ring homomorphism, then ϕ(1R) = 1S .

Proof We must show for any b ∈ S that ϕ(1R)b = b and bϕ(1R) = b.
Since ϕ is surjective, we have b = ϕ(a) for some a ∈ R.
Then ϕ(1R)b = ϕ(1R)ϕ(a) = ϕ(1Ra) = ϕ(a) = b.
Likewise bϕ(1R) = ϕ(a)ϕ(1R) = ϕ(a1R) = ϕ(a) = b.

6. Suppose G and H are groups. Prove that G×H ∼= H ×G.

Consider the map ϕ : G×H → H ×G, defined as ϕ((x, y)) = (y, x).

Note that this in injective, as follows: Suppose ϕ((x, y)) = ϕ((a, b)). Then (y, x) = (b, a), so y = b and x = a.
Therefore (x, y) = (a, b), and it follows that ϕ is injective.

To see that ϕ is surjective, just take an arbitrary element (x, y) ∈ H ×G, and note ϕ((y, x)) = (x, y).
Therefore ϕ is surjective.

The above two paragraphs imply that ϕ is bijective.

To finish the proof, observe that ϕ
(
(x, y)(a, b)

)
= ϕ((xa, yb)) = (yb, xa) = (y, x)(b, a) = ϕ((x, y))ϕ((a, b)).



7. Describe all the homomorphisms from Z to Z6.

First observe that given any fixed a ∈ Z6 we can define a function ϕ : Z→ Z6 as ϕ(n) = n · a.
(Where n · a means a plus itself n times.)
This is a homomorphism because ϕ(m+ n) = (m+ n) · a = m · a+ n · a = ϕ(m) + ϕ(n).
Let’s call this homomorphism ϕa, that is, ϕa is the homomprphism for which ϕa(n) = n · a.

The six different choices for a give us the following six homomorphism from Z to Z6:
function rule
ϕ0 ϕ0(n) = n · 0
ϕ1 ϕ1(n) = n · 1
ϕ2 ϕ2(n) = n · 2
ϕ3 ϕ3(n) = n · 3
ϕ4 ϕ4(n) = n · 4
ϕ5 ϕ5(n) = n · 5

No two of these functions are the same, since they all give different values when you plug in 1.
Thus so far we have six homomorphisms.

To show that these are the only six homomorphisms, we need to check that any given homomorphism ϕ : Z→ Z6

is one of the ones listed above. Given such a homomorphism, let ϕ(1) = a ∈ Z6. Then

ϕ(n) = ϕ(1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

) = ϕ(1) + ϕ(1) + · · ·+ ϕ(1)︸ ︷︷ ︸
n times

= n · ϕ(1) = n · a.

Therefore we have ϕ(n) = n · a, so ϕ is one of the six listed homomorphisms.

Conclusion: There are only six homomorphisms from Z to Z6. They are the ones listed above.

8. Prove that if ϕ : G→ H is a group homomorphism and G is cyclic, then the subgroup ϕ(G) is cyclic.

Proof Suppose G is cyclic, so G = 〈a〉 = {ak : k ∈ Z} for some a ∈ G.

To show ϕ(G) is cyclic, we are going to show ϕ(G) = 〈ϕ(a)〉.

Certainly, since ϕ(a) ∈ ϕ(G), we have 〈ϕ(a)〉 ⊆ ϕ(G).

To establish the reverse inclusion, suppose b ∈ ϕ(G). Take c ∈ G for which ϕ(c) = b. Then, as a generates G,
we have c = ak for some integer k. Thus b = ϕ(c) = ϕ(ak) = ϕ(a)k ∈ 〈ϕ(a)〉. This shows that b ∈ ϕ(G) implies
b ∈ 〈ϕ(a)〉, so ϕ(G) ⊆ 〈ϕ(a)〉.

The previous two paragraphs show ϕ(G) = 〈ϕ(a)〉, which means ϕ(G) is cyclic.



9. If a and b are elements in a ring R, then a(−b) = −(ab).

First note that a0 = 0 for any a ∈ R. To see why this is true, note that a0 = a(0 + 0) = (a0 + a0). Thus we
get the equation a0 = a0 + a0. Add −(a0) to both sides of this, and we get −(a0) + a0 = −a0 + a0 + a0, which
reduces to 0 = a0, as desired.

Using this, now reason as follows:

a(−b) = a(−b) + 0
= a(−b) + ab− (ab)
= a(−b+ b)− (ab)
= a0− (ab)
= 0 +−(ab)
= −(ab)

10. Suppose R is an integral domain whose only ideals are {0} and R. Prove that R must be a field.

An integral domain is a commutative ring with 1 and no zero divisors. To show that it is a field, we just need
to show that for any nonzero element a ∈ R, there is an element a−1 ∈ R for which aa−1 = 1.

Thus suppose a ∈ R, and a 6= 0. Consider the principal ideal 〈a〉 = {ar : r ∈ R}. This ideal contains
a1 = a 6= 0, so it is not the ideal {0}. The only other possibility is 〈a〉 = {ar : r ∈ R} = R. This means that
1 ∈ {ar : r ∈ R}, and consequently there is an element r ∈ R for which ar = 1. Therefore a has an inverse.

This completes the proof.


