Name:
Score: $\qquad$
Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and other computing or communication devices is not allowed on this test.

1. (5 points) Consider the vectors $\mathbf{u}=(8,-2,0,1), \mathbf{v}=(3,-2,1,1)$ and $\mathbf{w}=(1,4,4,1)$. in $\mathbb{R}^{4}$.

Find $\mathbf{x}$, given that $\mathbf{w}-2 \mathbf{x}=\mathbf{u}-3 \mathbf{v}$.

$$
\begin{aligned}
\mathbf{w}-2 \mathbf{x} & =\mathbf{u}-3 \mathbf{v} \\
-2 \mathbf{x} & =\mathbf{u}-3 \mathbf{v}-\mathbf{w} \\
\mathbf{x} & =-\frac{1}{2}(\mathbf{u}-3 \mathbf{v}-\mathbf{w}) \\
\mathbf{x} & =-\frac{1}{2}[(8,-2,0,1)-3(3,-2,1,1)-(1,4,4,1)] \\
\mathbf{x} & =-\frac{1}{2}(-2,0,-7,-3) \\
\mathbf{x} & =\left(1,0, \frac{7}{2}, \frac{3}{2}\right)
\end{aligned}
$$

2. (5 points) State what it means for a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{k}\right\}$ to be linearly independent.

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent if the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{2} \mathbf{v}_{3}, \ldots+c_{k} \mathbf{v}_{k}=\mathbf{0}$ has no non-trivial solutions. (That is if it has only the trivial solution $c_{1}=0, c_{2}=0, c_{3}=0, \ldots c_{k}=0$.)
3. (10 points) Say if each of the following sets is a vector space. (A "Yes" or "No" answer will suffice.)










4. (20 points) The problems on this page concern the matrix $A=\left[\begin{array}{rr}-7 & -5 \\ 10 & 8\end{array}\right]$.
(a) Find the eigenvalues of $A$.
$\left.\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}\lambda+7 & 5 \\ -10 & \lambda-8\end{array}\right|=(\lambda+7)(\lambda-8)+50=\lambda^{2}-\lambda-6=\right)(\lambda-3)(\lambda+2)=0$
From this you can see that the eigenvalues are $\lambda=3$ and $\lambda=-2$.
(b) For each eigenvalue from part (a), find the corresponding eigenvectors.

Eigenvectors for $\lambda=3$ :
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(3 I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{rr}10 & 5 \\ -10 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{rrr}10 & 5 & 0 \\ -10 & -5 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
Solutions: $2 x=-y$, i.e. $x=t, y=-2 t$ so the eigenvectors for $\lambda=3$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}t \\ -2 t\end{array}\right]=t\left[\begin{array}{c}1 \\ -2\end{array}\right]$
Note: If you made $y$ the parameter, your solution would be $x=-\frac{1}{2} t, y=t$ and your eigenvectors would be $\left[\begin{array}{r}-\frac{1}{2} t \\ t\end{array}\right]=t\left[\begin{array}{r}-\frac{1}{2} \\ 1\end{array}\right]$. This is correct too, since $\left[\begin{array}{r}-\frac{1}{2} \\ 1\end{array}\right]$ is a scalar multiple of $\left[\begin{array}{r}1 \\ -2\end{array}\right]$.

Eigenvectors for $\lambda=-2$ :
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(-2 I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{rr}5 & 5 \\ -10 & -10\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{rrr}5 & 5 & 0 \\ -10 & -10 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
Solutions: $x=-y$, i.e. $x=-t, y=t$ so the eigenvectors for $\lambda=-2$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-t \\ t\end{array}\right]=t\left[\begin{array}{r}-1 \\ 1\end{array}\right]$
5. (10 points) Show that $W=\{(a, b, a+2 b): a, b \in \mathbb{R}\}$ is a subspace of $\mathbb{R}^{3}$.

In words, $W$ is the set of all vectors in $\mathbb{R}^{3}$ whose third component equals the first component plus twice the second.
(a) Suppose that $\mathbf{x}$ and $\mathbf{y}$ are matrices in the set $W$.

This means $\mathbf{x}=(x, y, x+2 y)$ and $\mathbf{y}=\left(x^{\prime}, y^{\prime}, x^{\prime}+2 y^{\prime}\right)$, for some $x, y, x^{\prime}, y^{\prime} \in \mathbb{R}$.
Then $\mathbf{x}+\mathbf{y}=(x, y, x+2 y)+\left(x^{\prime}, y^{\prime}, x^{\prime}+2 y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, x+2 y+x^{\prime}+2 y^{\prime}\right)=$
$\left(x+x^{\prime}, y+y^{\prime},\left(x+x^{\prime}\right)+2\left(y+y^{\prime}\right)\right)$, and this is in $W$ because it has the form $(a, b, a+2 b)$ required for a vector in $W$.
Therefore $W$ is closed under addition.
(b) Suppose that $\mathbf{x} \in W$ and $c \in \mathbb{R}$.

This means $\mathbf{x}=(x, y, x+2 y)$ for some $x, y \in \mathbb{R}$.
Then $c \mathbf{x}=c(x, y, x+2 y)=(c x, c y, c x+2 c y)$ is in $W$ because it has the form required for a vector in $W$. Therefore $W$ is closed under scalar multiplication.

Parts (a) and (b) above show that $W$ is closed under addition and scalar multiplication, so $W$ is a subspace.
6. (10 points) Suppose $A$ is a fixed $2 \times 2$ matrix. Show that the set $W=\{X: A X=X A\}$ is a subspace of $M_{2,2}$.
(a) Suppose that $B$ and $C$ are matrices in the set $W$.

This means $A B=B A$ and $A C=C A$.
Then $A(B+C)=A B+A C=B A+C A=(B+C) A$.
And $A(B+C)=(B+C) A$ means that $B+C \in W$.
Therefore $W$ is closed under addition.
(b) Suppose that $B \in W$ and $c \in \mathbb{R}$.

The fact that $B \in W$ means $A B=B A$.
Observe that $A(c B)=c(A B)=c(B A)=(c B) A$.
And $A(c B)=(c B) A$ means $c B \in W$.
Therefore $W$ is closed under scalar multiplication.
Parts (a) and (b) above show that $W$ is closed under addition and scalar multiplication, so $W$ is a subspace.
7. (10 points) Suppose $W$ is the set of all matrices in $M_{2,2}$ that have have determinant equal to 0 . Explain why $W$ is not a subspace of $M_{2,2}$.
Observe that the matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ both have determinant 0 , so they are in $W$.
But their sum $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ has determinant $1 \neq 0$, so it is not in $W$.
Thus the set $W$ is not closed under addition, so it is not a subspace of $M_{2,2}$.
8. (10 points) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three vectors in a vector space $V$. Without knowing any further information, is it possible to say whether or not the set $\{\mathbf{v}-\mathbf{u}, \mathbf{w}-\mathbf{v}, \mathbf{u}-\mathbf{w}\}$ is linearly independent or dependent?

Notice that $1(\mathbf{v}-\mathbf{u})+1(\mathbf{w}-\mathbf{v})+1(\mathbf{u}-\mathbf{w})=\mathbf{0}$, so it follows the set $S$ is linearly dependent.

Note: One common mistake was to take the equation $c_{1}(\mathbf{v}-\mathbf{u})+c_{2}(\mathbf{w}-\mathbf{v})+c_{3}(\mathbf{u}-\mathbf{w})=\mathbf{0}$, regroup it as $\left(c_{3}-c_{1}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v}+\left(c_{2}-c_{3}\right) \mathbf{w}=\mathbf{0}$, get $c_{3}-c_{1}=0, c_{1}-c_{2}=0, c_{2}-c_{3}=0$, and solve the resulting system.

But there is a problem with this approach. Since we are not given that the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, we can't deduce that $c_{3}-c_{1}=0, c_{1}-c_{2}=0, c_{2}-c_{3}=0$.
9. (10 points) Is the set $\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$ linearly independent or dependent?

We need to see whether the equation $c_{1}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+c_{2}\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]+c_{3}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has any nontrivial solutions.

This equation gives rise to the following system.

$\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & -1 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
So there's only the trivial solution $c_{1}=0, c_{2}=0, c_{3}=0$, so the set is LINEARLY INDEPENDENT.
10. (10 points) Does the set $\left\{1+x, x+x^{2}, x^{2}+x^{3}, 1+x^{3}\right\}$ span $P_{3}$ ?

Given an arbitrary polynomial $a+b x+c x^{2}+d x^{3}$, we want to know if we can always find values for $c_{1}, c_{2}, c_{3}, c_{4}$ satisfying $c_{1}(1+x)+c_{2}\left(x+x^{2}\right)+c_{3}\left(x^{2}+x^{3}\right)+c_{4}\left(1+x^{3}\right)=a+b x+c x^{2}+d x^{3}$.
Combining, we get $\left(c_{1}+c_{4}\right)+\left(c_{1}+c_{2}\right) x+\left(c_{2}+c_{3}\right) x^{2}+\left(c_{3}+c_{4}\right) x^{3}=a+b x+c x^{2}+d x^{3}$, which leads to the following system.

$$
\left\{\begin{array}{rll}
c_{1} & & +c_{4}
\end{array}=a=\left\{\begin{array}{l} 
\\
c_{1}+c_{2} \\
\\
c_{2}+c_{3} \\
\\
\end{array}\right.\right.
$$

Solving:
$\left[\begin{array}{lllll}1 & 0 & 0 & 1 & a \\ 1 & 1 & 0 & 0 & b \\ 0 & 1 & 1 & 0 & c \\ 0 & 0 & 1 & 1 & d\end{array}\right] \rightarrow\left[\begin{array}{rrrrc}1 & 0 & 0 & 1 & a \\ 0 & 1 & 0 & -1 & b-a \\ 0 & 1 & 1 & 0 & c \\ 0 & 0 & 1 & 1 & d\end{array}\right] \rightarrow\left[\begin{array}{rrrrc}1 & 0 & 0 & 1 & a \\ 0 & 1 & 0 & -1 & b-a \\ 0 & 0 & 1 & 1 & c-b+a \\ 0 & 0 & 1 & 1 & d\end{array}\right] \rightarrow$
$\left[\begin{array}{rrrrc}1 & 0 & 0 & 1 & a \\ 0 & 1 & 0 & -1 & b-a \\ 0 & 0 & 1 & 1 & c-b+a \\ 0 & 0 & 0 & 0 & d-c+b-a\end{array}\right]$
Looking at the last row, you can see the system has no solutions for some values of $a, b c$ and $d$. In particular if $a=0, b=0, c=0$ and $d=1$, there will be no solution.

Thus the polynomial $0+0 x+0 x^{2}+x^{3}$ cannot be written as a linear combination of elements in the set, so the set does not span $P_{3}$.

