Name:
Score: \qquad
Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and other computing or communication devices is not allowed on this test.

1. (5 points) Consider the vectors $\mathbf{u}=(8,-2,0,1), \mathbf{v}=(3,-2,1,1)$ and $\mathbf{w}=(1,4,4,1)$. in \mathbb{R}^{4}. Find \mathbf{x}, given that $\mathbf{w}-2 \mathbf{x}=\mathbf{u}-3 \mathbf{v}$.
2. (5 points) State what it means for a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{k}\right\}$ to be linearly independent.
3. (10 points) Say if each of the following sets is a vector space. (A "Yes" or "No" answer will suffice.)
(a) $\quad\left\{(x, y) \in \mathbb{R}^{2}: x-y=0\right\}$
(b) $\quad\left\{\left[\begin{array}{cc}x & x+1 \\ x & x\end{array}\right]: x \in \mathbb{R}\right\}$
(c) $\left\{\left[\begin{array}{cc}0 & x \\ 2 x & 0\end{array}\right]: x \in \mathbb{R}\right\}$
(d) $\quad\{f \in C(-\infty, \infty): f(3)=0\}$
(e) $\quad P_{9}$
(f) $\quad M_{9,3}$
(g) $\quad\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
(h) $\quad\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>0\right\}$
(i) $\quad\left\{(x, y, z) \in \mathbb{R}^{3}: x=0\right\}$
(j) $\quad\{(0,0,0)\}$
4. (20 points) The problems on this page concern the matrix $A=\left[\begin{array}{rr}-7 & -5 \\ 10 & 8\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) For each eigenvalue from part (a), find the corresponding eigenvectors.
5. (10 points) Show that $W=\{(a, b, a+2 b): a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^{2}.
6. (10 points) Suppose A is a fixed 2×2 matrix. Show that the set $W=\{X: A X=X A\}$ is a subspace of $M_{2,2}$.
7. (10 points) Suppose W is the set of all matrices in $M_{2,2}$ that have have determinant equal to 0 . Explain why W is not a subspace of $M_{2,2}$.
8. (10 points) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three vectors in a vector space V. Without knowing any further information, is it possible to say whether or not the set $\{\mathbf{v}-\mathbf{u}, \mathbf{w}-\mathbf{v}, \mathbf{u}-\mathbf{w}\}$ is linearly independent or dependent?
9. (10 points) Is the set $\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$ linearly independent or dependent?
10. (10 points) Does the set $\left\{1+x, x+x^{2}, x^{2}+x^{3}, 1+x^{3}\right\}$ span P_{3} ?
