Name: \qquad Score: \qquad
Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and other computing or communication devices is not allowed on this test.

1. (25 points) For this problem, $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 5\end{array}\right], B=\left[\begin{array}{rr}2 & -1 \\ -2 & 1\end{array}\right], C=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and $D=\left[\begin{array}{ll}-2 & 0\end{array}\right]$.

Preform the indicated operations or state that they are not possible.
(a) $\quad B A=\left[\begin{array}{rr}2 & -1 \\ -2 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 5\end{array}\right]=\left[\begin{array}{rrr}3 & 1 & -7 \\ -3 & -1 & 7\end{array}\right]$
(b) $\quad A^{T} C=\left[\begin{array}{rr}2 & 1 \\ 3 & 5 \\ -1 & 5\end{array}\right]\left[\begin{array}{r}-2 \\ 4\end{array}\right]=\left[\begin{array}{r}0 \\ 14 \\ 22\end{array}\right]$
(c) $\quad B^{-1}=\frac{1}{2-2}\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ Operation can't be done because it involves division by 0 . No inverse exists.
(d) $C D=\left[\begin{array}{r}-2 \\ 4\end{array}\right]\left[\begin{array}{ll}-2 & 0\end{array}\right]=\left[\begin{array}{rr}4 & 0 \\ -8 & 0\end{array}\right]$
(e) Solve the equation $X-3 B+2 I_{2}=O$ for X.

$$
\begin{aligned}
X-3 B+2 I_{2} & =O \\
X & =3 B-2 I_{2} \\
X & =3\left[\begin{array}{rr}
2 & -1 \\
-2 & 1
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
X & =\left[\begin{array}{rr}
6 & -3 \\
-6 & 3
\end{array}\right]+\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right] \\
X & =\left[\begin{array}{rr}
4 & -3 \\
-6 & 1
\end{array}\right]
\end{aligned}
$$

2. (15 points) Suppose A, B and C are invertible matrices. Solve the equation $A X C=C B$ for X.

$$
\begin{aligned}
A X C & =C B \\
A^{-1} A X C & =A^{-1} C B \\
I X C & =A^{-1} C B \\
X C & =A^{-1} C B \\
X C C^{-1} & =A^{-1} C B C^{-1} \\
X I & =A^{-1} C B C^{-1} \\
X & =A^{-1} C B C^{-1}
\end{aligned}
$$

3. (15 points) Find the inverse of the matrix $A=\left[\begin{array}{lll}3 & 5 & 5 \\ 1 & 2 & 2 \\ 0 & 1 & 2\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
3 & 5 & 5 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \quad R_{1} \leftrightarrow R_{2} \quad\left[\begin{array}{lll|lll}
1 & 2 & 2 & 0 & 1 & 0 \\
3 & 5 & 5 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \quad R_{2}-3 R_{1} \rightarrow R_{2}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & -3 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\\
R_{1}+2 R_{2} \rightarrow R_{1} \\
R_{3}+R_{2} \rightarrow R_{3}
\end{array} \quad\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 2 & -5 & 0 \\
0 & -1 & -1 & 1 & -3 & 0 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right] \quad R_{2}+R_{3} \rightarrow R_{2}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 2 & -5 & 0 \\
0 & -1 & 0 & 2 & -6 & 1 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right] \quad-R_{2} \rightarrow R_{2} \quad\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 2 & -5 & 0 \\
0 & 1 & 0 & -2 & 6 & -1 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right]} \\
& \text { Thus } A^{-1}=\left[\begin{array}{rrr}
2 & -5 & 0 \\
-2 & 6 & -1 \\
1 & -3 & 1
\end{array}\right] .
\end{aligned}
$$

4. (15 points) Find A, given that $(2 A)^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

$$
\begin{aligned}
(2 A)^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
\left((2 A)^{-1}\right)^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1} \\
2 A & =\frac{1}{1 \cdot 4-2 \cdot 3}\left[\begin{array}{rr}
4 & -2 \\
-3 & 1
\end{array}\right] \\
2 A & =-\frac{1}{2}\left[\begin{array}{rr}
4 & -2 \\
-3 & 1
\end{array}\right] \\
A & =-\frac{1}{4}\left[\begin{array}{rr}
4 & -2 \\
-3 & 1
\end{array}\right] \\
A & =\left[\begin{array}{rr}
-1 & 1 / 2 \\
3 / 4 & -1 / 4
\end{array}\right]
\end{aligned}
$$

5. (15 points) Factor the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ into a product of elementary matrices.
$\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right] R_{2}-R_{1} \rightarrow R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \frac{1}{2} R_{2} \rightarrow R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
This sequence of row reductions shows $\left[\begin{array}{rr}1 & 0 \\ 0 & 1 / 2\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Hence $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{-1}\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]^{-1}\left[\begin{array}{rr}1 & 0 \\ 0 & 1 / 2\end{array}\right]^{-1}$
So $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
Note: There are other correct answers. Depending on the sequence of row operations you used, you may have obtained a different (but still correct) factoring of A into elementary matrices.
6. (15 points) Find an $L U$ factorization of the matrix $A=\left[\begin{array}{rrr}3 & 0 & 1 \\ 6 & 1 & 1 \\ -3 & 1 & 0\end{array}\right]$.

$$
\left[\begin{array}{rrr}
3 & 0 & 1 \\
6 & 1 & 1 \\
-3 & 1 & 0
\end{array}\right] R_{2}-2 R_{1} \rightarrow R_{2}\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & 1 & -1 \\
-3 & 1 & 0
\end{array}\right] R_{3}+R_{1} \rightarrow R_{3}\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] R_{3}-R_{2} \rightarrow R_{3}\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

This sequence of row operations shows $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A=\left[\begin{array}{rrr}3 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$.
Thus $A=\left(\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]^{-1}\right)\left[\begin{array}{rrr}3 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$
So $A=\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\right)\left[\begin{array}{rrr}3 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$.
Thus $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{rrr}3 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$.

