Name: \qquad R. Hammack

Score: \qquad

Directions: This is a take-home test. It is due at the beginning of class on Wednesday, February 21. Please answer all questions in the space provided. Consider working the problems on scratch paper, then rewriting them neatly on the test. Additional copies of this test can be downloaded from my web page if needed.
For this test, you may discuss the problems among yourselves and share ideas, but the work you turn in must be your own (not copied). At the end of your solution to each problem, please list who (if anyone) you talked to about that problem, plus any additional information you want me to know (e.g. that you gave more help than you received, or vice versa, etc.).

- Please clearly indicate all of your row operations (e.g. $R_{2}+3 R_{4} \rightarrow R_{2}$, etc).
- Indicate your solution clearly by putting it in a box.
- Constants that are not integers should be expressed as fractions.
- You may consult your text and notes, but no other source.
- In order to get full credit, you must show or explain all of your work.

1. (20 points) Find the determinants. If you need more room for (d), reconsider your approach.
(a) $\left|\begin{array}{cc}-5 & -\frac{1}{2} \\ 10 & 1\end{array}\right|=(-5)(1)-(10)\left(-\frac{1}{2}\right)=0$
(b) $\left|\begin{array}{rrr}5 & 1 & 3 \\ -3 & 4 & 4 \\ 5 & 5 & 5\end{array}\right|=\left|\begin{array}{rrr}0 & 1 & 0 \\ -23 & 4 & -8 \\ -20 & 5 & -10\end{array}\right|=0-\left|\begin{array}{cc}-23 & -8 \\ -20 & -10\end{array}\right|+0=\boxed{-70}$
(Column operations $C_{1}-5 C_{2} \rightarrow C_{1}$ and $C_{3}-3 C_{2} \rightarrow C_{3}$ followed by expansion along row 1.)
(c) $\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 3 & 3 & 6 & 1 \\ 0 & 1 & 3 & 0 \\ -2 & 4 & 8 & -2\end{array}\right|=\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 0 & 6 & 12 & -14 \\ 0 & 1 & 3 & 0 \\ 0 & 2 & 4 & 8\end{array}\right|=-\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 0 & 1 & 3 & 0 \\ 0 & 6 & 12 & -14 \\ 0 & 2 & 4 & 8\end{array}\right|=-\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -6 & -14 \\ 0 & 0 & -2 & 8\end{array}\right|=$ $-\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & -38 \\ 0 & 0 & -2 & 8\end{array}\right|=\left|\begin{array}{rrrr}1 & -1 & -2 & 5 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -2 & 8 \\ 0 & 0 & 0 & -38\end{array}\right|=76$
(d) $\left|\begin{array}{rrrrrrr}2 & -1 & -2 & 5 & 2 & 1 & 6 \\ 4 & 3 & 4 & 5 & 2 & 1 & 6 \\ 1 & 1 & -3 & 0 & 2 & -1 & 2 \\ 2 & 2 & -6 & 0 & 4 & -2 & 4 \\ 1 & 2 & -6 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & -6 & 1 & 1 & 1 & 1\end{array}\right|=0$ (Because row 4 is a multiple of row 3.)
2. (10 points) Solve the system $\left\{\begin{aligned} 2 w-x-y+3 z & =0 \\ w+x-2 y+z & =1 \\ 2 w+x+y-z & =2 \\ 3 w-x+y+z & =1\end{aligned}\right.$

$$
\left[\begin{array}{rrrrr}
2 & -1 & -1 & 3 & 0 \\
1 & 1 & -2 & 1 & 1 \\
2 & 1 & 1 & -1 & 2 \\
3 & -1 & 1 & 1 & 1
\end{array}\right] \quad R_{2} \leftrightarrow R_{1}\left[\begin{array}{rrrrr}
1 & 1 & -2 & 1 & 1 \\
2 & -1 & -1 & 3 & 0 \\
2 & 1 & 1 & -1 & 2 \\
3 & -1 & 1 & 1 & 1
\end{array}\right] \begin{aligned}
& R_{2}-2 R_{1} \rightarrow R_{2} \\
& R_{3}-2 R_{1} \rightarrow R_{3} \\
& R_{4}-3 R_{1} \rightarrow R_{4}
\end{aligned}
$$

$$
\left[\begin{array}{rrrrr}
1 & 1 & -2 & 1 & 1 \\
0 & -3 & 3 & 1 & -2 \\
0 & -1 & 5 & -3 & 0 \\
0 & -4 & 7 & -2 & -2
\end{array}\right] \quad R_{2} \leftrightarrow R_{3}\left[\begin{array}{rrrrr}
1 & 1 & -2 & 1 & 1 \\
0 & -1 & 5 & -3 & 0 \\
0 & -3 & 3 & 1 & -2 \\
0 & -4 & 7 & -2 & -2
\end{array}\right]-R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{rrrrr}
1 & 1 & -2 & 1 & 1 \\
0 & 1 & -5 & 3 & 0 \\
0 & -3 & 3 & 1 & -2 \\
0 & -4 & 7 & -2 & -2
\end{array}\right] \begin{gathered}
R_{1}-R_{2} \rightarrow R_{1} \\
R_{3}+3 R_{2} \rightarrow R_{3} \\
R_{4}+4 R_{2} \rightarrow R_{4}
\end{gathered}\left[\begin{array}{rrrrr}
1 & 0 & 3 & -2 & 1 \\
0 & 1 & -5 & 3 & 0 \\
0 & 0 & -12 & 10 & -2 \\
0 & 0 & -13 & 10 & -2
\end{array}\right] R_{3}-R_{4} \rightarrow R_{3}
$$

$$
\left[\begin{array}{rrrrr}
1 & 0 & 3 & -2 & 1 \\
0 & 1 & -5 & 3 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -13 & 10 & -2
\end{array}\right] \begin{gathered}
\\
R_{1}-3 R_{3} \rightarrow R_{1} \\
R_{2}+5 R_{3} \rightarrow R_{2} \\
R_{4}+13 R_{3} \rightarrow R_{4}
\end{gathered}\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 1 \\
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 10 & -2
\end{array}\right] \frac{1}{10} R_{4} \rightarrow R_{4}
$$

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 1 \\
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{5}
\end{array}\right] \begin{aligned}
& R_{1}+2 R_{4} \rightarrow R_{1} \\
& R_{2}-3 R_{4} \rightarrow R_{2}
\end{aligned}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{3}{5} \\
0 & 1 & 0 & 0 & \frac{3}{5} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{5}
\end{array}\right]
$$

SOLUTION: $w=\frac{3}{5}, \quad x=\frac{3}{5}, \quad y=0, \quad z=-\frac{1}{5}$
3. (10 points) Solve the system $\left\{\begin{array}{r}2 w+x+y+3 z=1 \\ 2 w-7 x+y+11 z=1 \\ 2 w+3 x+y+z=1\end{array}\right.$
\(\left[\begin{array}{rrrrr}2 \& 1 \& 1 \& 3 \& 1 \\
2 \& -7 \& 1 \& 11 \& 1 \\

2 \& 3 \& 1 \& 1 \& 1\end{array}\right]\)| $R_{2}-R_{1} \rightarrow R_{2}$ |
| :--- |
| $R_{3}-R_{1} \rightarrow R_{3}$ |\(\left[\begin{array}{rrrrr}2 \& 1 \& 1 \& 3 \& 1 \\

0 \& -8 \& 0 \& 8 \& 0 \\

0 \& 2 \& 0 \& -2 \& 0\end{array}\right]\)| $-\frac{1}{8} R_{2} \rightarrow R_{2}$ |
| :---: |
| $\frac{1}{2} R_{3} \rightarrow R_{3}$ |

$\left[\begin{array}{rrrrr}2 & 1 & 1 & 3 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0\end{array}\right] \begin{aligned} & R_{1}-R_{2} \rightarrow R_{1} \\ & R_{3}-R_{2} \rightarrow R_{3}\end{aligned}\left[\begin{array}{rrrrr}2 & 0 & 1 & 4 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \frac{1}{2} R_{1} \rightarrow R_{1}$
$\left[\begin{array}{rrrrr}1 & 0 & 1 / 2 & 2 & 1 / 2 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

This corresponds to the system $\left\{\begin{aligned} w & \left.\begin{array}{rl}+\frac{1}{2} y & 2 z\end{array}\right)=\frac{1}{2} \\ & x\end{aligned}\right.$ SOLUTION: $w=\frac{1}{2}-\frac{1}{2} s-2 t, \quad x=t, \quad y=s, \quad z=t$
4. (10 points) Solve the system $\left\{\begin{aligned} x+4 y+5 z & =1 \\ x+18 y+7 z & =2 \\ x-3 y+4 z & =1\end{aligned}\right.$

$$
\left[\begin{array}{rrrr}
1 & 4 & 5 & 1 \\
1 & 18 & 7 & 2 \\
1 & -3 & 4 & 1
\end{array}\right] \quad \begin{aligned}
& R_{2}-R_{1} \rightarrow R_{2} \\
& R_{3}-R_{1} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{rrrr}
1 & 4 & 5 & 1 \\
0 & 14 & 2 & 1 \\
0 & -7 & -1 & 0
\end{array}\right] \quad \frac{1}{2} R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{rrrr}
1 & 4 & 5 & 1 \\
0 & 7 & 1 & 1 / 2 \\
0 & -7 & -1 & 0
\end{array}\right] \quad R_{3}+R_{2} \rightarrow R_{3}\left[\begin{array}{rrrr}
1 & 4 & 5 & 1 \\
0 & 7 & 1 & 1 / 2 \\
0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

The last row corresponds to the equation $0 x+0 y+0 z=1 / 2$. From this we deduce that the system has NO SOLUTIONS.
5. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 7 & 3 \\ 1 & 2 & 2\end{array}\right]$.
(a) (10 points) Find an $L U$ factorization of A.

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 7 & 3 \\
1 & 2 & 2
\end{array}\right] \begin{gathered}
R_{2}-3 R_{1} \rightarrow R_{2} \\
R_{3}-R_{1} \rightarrow R_{3}
\end{gathered}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=U
$$

Therefore $\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right] A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

So $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]^{-1}\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Thus $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) (10 points) Find the inverse of A. (If it exists.)

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
3 & 7 & 3 & 0 & 1 & 0 \\
1 & 2 & 2 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
R_{2}-3 R_{1} \rightarrow R_{2} \\
R_{3}-R_{1} \rightarrow R_{3}
\end{array}\left[\begin{array}{lll|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] R_{1}-R_{3} \rightarrow R_{1}} \\
& {\left[\begin{array}{lll|rrr}
1 & 2 & 0 & 2 & 0 & -1 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]{ }_{2}-2 R_{2} \rightarrow R_{1}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 8 & -2 & -1 \\
0 & 1 & 0 & -3 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]} \\
& \text { Therefore } A_{1}=\left[\begin{array}{rrr}
8 & -2 & -1 \\
-3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

6. (6 points) Suppose $A=\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & -2\end{array}\right]$. Find X if $A^{T} B-X=2 I_{3}$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & -2]-X=2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{lll}
3 & 3 & -6 \\
1 & 1 & -2 \\
2 & 2 & -4
\end{array}\right]-X=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]} \\
X=\left[\begin{array}{lll}
3 & 3 & -6 \\
1 & 1 & -2 \\
2 & 2 & -4
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & -6 \\
1 & -1 & -2 \\
2 & 2 & -6
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

7. (6 points) If $D=\left[\begin{array}{rr}-1 & -2 \\ 1 & 0\end{array}\right]$, find D^{-2}.

$$
D^{-2}=\left(D^{2}\right)^{-1}=\left[\begin{array}{rr}
-1 & 2 \\
-1 & -2
\end{array}\right]^{-1}=\frac{1}{(-1) \cdot(-2)-2 \cdot(-1)}\left[\begin{array}{rr}
-2 & -2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
-\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right]
$$

8. (6 points) Suppose A and B are 4×4 matrices, and $\operatorname{det}(A)=5$, and $\operatorname{det}(B)=-2$. Find $\operatorname{det}\left(2 A^{2} B^{-3}\right)$.

$$
\begin{aligned}
& \operatorname{det}\left(2 A^{2} B^{-3}\right)=2^{4} \operatorname{det}\left(A^{2} B^{-3}\right)=16 \operatorname{det}\left(A^{2}\left(B^{3}\right)^{-1}\right) \\
& =16 \operatorname{det}\left(A^{2}\right) \operatorname{det}\left(\left(B^{3}\right)^{-1}\right)=16 \operatorname{det}(A A) \operatorname{det}\left(\left(B^{3}\right)^{-1}\right) \\
& =16 \operatorname{det}(A) \operatorname{det}(A) \operatorname{det}\left(\left(B^{3}\right)^{-1}\right)=\frac{16 \operatorname{det}(A) \operatorname{det}(A)}{\operatorname{det}\left(B^{3}\right)}= \\
& \frac{16 \operatorname{det}(A) \operatorname{det}(A)}{\operatorname{det}(B) \operatorname{det}(B) \operatorname{det}(B)}=\frac{16 \cdot 5 \cdot 5}{(-2)(-2)(-2)}=-50
\end{aligned}
$$

9. (6 points) Find an example of a 2×2 matrix A for which $A \neq O$, but $A^{2}=O$.

Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then $A \neq O$, but $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$.
10. (6 points) Suppose A is a 7×7 matrix, and $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$. Is A invertible or singular? Explain.

This is saying that the equation $A \mathbf{x}=\mathbf{0}$ has a NONTRIVIAL solution.
By the Equivalent Conditions for a Nonsingular Matrix (page 144),
it follows that A is not invertible, so A is singular.

