Name: \qquad R. Hammack

Score: \qquad

Directions: This is a take-home test. It is due at the beginning of class on Wednesday, September 6. Please answer all questions in the space provided. Consider working the problems on scratch paper, then rewriting them neatly on the test. Additional copies of this test can be downloaded from my web page if needed.

For this test, you may discuss the problems among yourselves and share ideas, but the work you turn in must be your own (not copied). At the end of your solution to each problem, please list who (if anyone) you talked to about that problem, plus any additional information you want me to know (i.e. that you gave more help than you received, or vice versa, etc.).

- Use Gaussian elimination or Gauss-Jordan elimination to solve the problems.
- Please clearly indicate all of your row operations (e.g. $R_{2}+3 R_{4} \rightarrow R_{2}$, etc).
- Put your final matrix in row-echelon or reduced row-echelon form.
- If a system has more than one solution, state the solution set in parametric form.
- Indicate your solution clearly by putting it in a box.
- Constants that are not integers should be expressed as fractions.
- You may consult your text and notes, but no other source.
- In order to get full credit, you must show all of your work.

1. (8 points) Solve the system $\left\{\begin{array}{l}2 x+4 y=7 \\ 6 x-2 y=0\end{array}\right.$
$\left[\begin{array}{rrr}2 & 4 & 7 \\ 6 & -2 & 0\end{array}\right] R_{2}-3 R_{1} \rightarrow R_{2}\left[\begin{array}{rrr}2 & 4 & 7 \\ 0 & -14 & -21\end{array}\right] \begin{gathered}\frac{1}{2} R_{1} \rightarrow R_{1} \\ -\frac{1}{14} R_{2} \rightarrow R_{2}\end{gathered}\left[\begin{array}{ccc}1 & 2 & \frac{7}{2} \\ 0 & 1 & \frac{3}{2}\end{array}\right] R_{1}-2 R_{2} \rightarrow R_{1}\left[\begin{array}{ccc}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2}\end{array}\right]$
Solution: $x=\frac{1}{2}, \quad y=\frac{3}{2}$
2. (8 points) Solve the system $\left\{\begin{array}{l}2 x+4 y=7 \\ 6 x+12 y=0\end{array}\right.$
$\left[\begin{array}{rrr}2 & 4 & 7 \\ 6 & 12 & 0\end{array}\right] R_{2}-3 R_{1} \rightarrow R_{2}\left[\begin{array}{rrr}2 & 4 & 7 \\ 0 & 0 & -21\end{array}\right] \begin{gathered}\frac{1}{2} R_{1} \rightarrow R_{1} \\ -\frac{1}{21} R_{2} \rightarrow R_{2}\end{gathered}\left[\begin{array}{lll}1 & 2 & \frac{7}{2} \\ 0 & 0 & 1\end{array}\right]$
Second row gives $0=1$, so no solution.
3. (8 points) Solve the system $\left\{\begin{aligned} 2 x+4 y & =7 \\ 6 x+12 y & =21\end{aligned}\right.$
$\left[\begin{array}{rrr}2 & 4 & 7 \\ 6 & 12 & 21\end{array}\right] \quad R_{2}-3 R_{1} \rightarrow R_{2}\left[\begin{array}{ccc}2 & 4 & 7 \\ 0 & 0 & 0\end{array}\right] \quad \begin{aligned} & \frac{1}{2} R_{1} \rightarrow R_{1}\end{aligned}\left[\begin{array}{ccc}1 & 2 & \frac{7}{2} \\ 0 & 0 & 0\end{array}\right]$
Solution: $x=\frac{7}{2}-2 t, \quad y=t$

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -2 & 0 \\
1 & -2 & -4 \\
1 & -1 & -1 \\
3 & 2 & 12
\end{array}\right]}
\end{aligned} R_{1} \leftrightarrow R_{2}\left[\begin{array}{rrr}
1 & -2 & -4 \\
3 & -2 & 0 \\
1 & -1 & -1 \\
3 & 2 & 12
\end{array}\right] \begin{gathered}
R_{2}-3 R_{1} \rightarrow R_{2} \\
R_{3}-R_{1} \rightarrow R_{3} \\
R_{4}-3 R_{1} \rightarrow R_{4}
\end{gathered}\left[\begin{array}{rrr}
1 & -2 & -4 \\
0 & 4 & 12 \\
0 & 1 & 3 \\
0 & 8 & 24
\end{array}\right] \begin{aligned}
& \frac{1}{4} R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{rrr}
1 & -2 & -4 \\
0 & 1 & 3 \\
0 & 1 & 3 \\
0 & 1 & 3
\end{array}\right]}
\end{aligned} \begin{aligned}
& \\
& R_{3}-R_{2} \rightarrow R_{3} \\
& R_{4}-R_{2} \rightarrow R_{4}
\end{aligned}\left[\begin{array}{rrr}
1 & -2 & -4 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] R_{4}+\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad .
$$

Solution: $x=2, \quad y=3$
5. (12 points) Solve the system $\left\{\begin{array}{rlr}5 x_{1} & -10 x_{2}-5 x_{3}+15 x_{4} & =25 \\ -3 x_{1} & +6 x_{2}+2 x_{3}+5 x_{4} & =5\end{array}\right.$
$\left[\begin{array}{rrrrr}5 & -10 & -5 & 15 & 25 \\ -3 & 6 & 2 & 1 & 5\end{array}\right] \frac{1}{5} R_{1} \rightarrow R_{1}\left[\begin{array}{rrrrr}1 & -2 & -1 & 3 & 5 \\ -3 & 6 & 2 & 1 & 5\end{array}\right] R_{2}+3 R_{1} \rightarrow R_{2}$
$\left[\begin{array}{rrrrr}1 & -2 & -1 & 3 & 5 \\ 0 & 0 & -1 & 10 & 20\end{array}\right]-R_{2} \rightarrow R_{2}\left[\begin{array}{rrrrr}1 & -2 & -1 & 3 & 5 \\ 0 & 0 & 1 & -10 & -20\end{array}\right] R_{1}+R_{2} \rightarrow R_{1}$
$\left[\begin{array}{rrrrr}1 & -2 & 0 & -7 & -15 \\ 0 & 0 & 1 & -10 & -20\end{array}\right]$
The new system is $\left\{\begin{array}{lllllll}x_{1} & - & 2 x_{2} & & - & 7 x_{4} & = \\ & & x_{3} & -15 \\ & & & 10 x_{4} & = & -20\end{array}\right.$
So $\left\{\begin{array}{l}x_{1}=2 x_{2}+7 x_{4}-15 \\ x_{3}=10 x_{4}-20\end{array}\right.$

Solution: | $x_{1}=2 s+7 t-15$ | $x_{2}=s$ | $x_{3}=10 t-20$ | $x_{4}=t$ |
| :--- | :--- | :--- | :--- |

6. (12 points) Solve the system $\left\{\begin{aligned} 2 w & -2 x \\ w+2 z & =4 \\ -w+y-y & =2 \\ w-x-y-y & =2 \\ w-y & =2\end{aligned}\right.$

$$
\left.\left.\begin{array}{ll}
{\left[\begin{array}{rrrrr}
2 & -2 & 0 & 2 & 4 \\
1 & 1 & -1 & -1 & 2 \\
-1 & 1 & -1 & -1 & 2 \\
1 & -1 & -1 & 1 & 2
\end{array}\right]}
\end{array} \begin{array}{l}
{\left[\begin{array}{rrrr}
2 \\
2
\end{array} \rightarrow R_{1}\right.} \\
{\left[\begin{array}{rrrrr}
1 & -1 & 0 & 1 & 2 \\
0 & 2 & -1 & -2 & 0 \\
0 & 0 & -1 & 0 & 4 \\
0 & 0 & -1 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{rrrrr}
1 & -1 & 0 & 1 & 2 \\
1 & 1 & -1 & -1 & 2 \\
-1 & 1 & -1 & -1 & 2 \\
1 & -1 & -1 & 1 & 2
\end{array}\right] \quad \begin{array}{l}
R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+R_{1} \rightarrow R_{3} \\
R_{4}-R_{1} \rightarrow R_{4}
\end{array}\right] \begin{array}{r}
{\left[\begin{array}{rrrrr}
1 & -1 & 0 & 1 & 2 \\
0 & 2 & -1 & -2 & 0 \\
0 & 0 & -1 & 0 & 4 \\
0 & 0 & 0 & 0 & -4
\end{array}\right] \quad \begin{array}{l}
\frac{1}{2} R_{4} \rightarrow R_{4} \\
-R_{3} \rightarrow R_{3} \\
-\frac{1}{4} R_{4} \rightarrow R_{4}
\end{array}} \\
{\left[\begin{array}{rrrrr}
1 & -1 & 0 & 1 & 2 \\
0 & 1 & -\frac{1}{2} & -1 & 0 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}
$$

The last row indicates that there are No Solutions.
7. (12 points) Solve the system $\left\{\begin{array}{rlrl}-3 x & +6 y-9 z & =12 \\ x & -2 y+3 z & =-4 \\ -\frac{1}{3} x & +\frac{2}{3} y- & z & =\frac{4}{3}\end{array}\right.$

$$
\left[\begin{array}{rrrr}
-3 & 6 & -9 & 12 \\
1 & -2 & 3 & -4 \\
-\frac{1}{3} & -\frac{2}{3} & -1 & \frac{4}{3}
\end{array}\right] \begin{gathered}
-\frac{1}{3} R_{1} \rightarrow R_{1} \\
-3 R_{3} \rightarrow R_{3}
\end{gathered}\left[\begin{array}{rrrr}
1 & -2 & 3 & -4 \\
1 & -2 & 3 & -4 \\
1 & -2 & 3 & -4
\end{array}\right] \begin{aligned}
& R_{2}-R_{1} \rightarrow R_{2} \\
& R_{3}-R_{1} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{rrrr}
1 & -2 & 3 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: $x=-4+2 s-3 t, \quad y=s, \quad z=t$
8. (12 points) Solve the system $\left\{\begin{aligned} x+3 y+2 z & =1 \\ 2 x+9 y-z & =8 \\ 3 x-6 y+4 z & =0\end{aligned}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
2 & 9 & -1 & 8 \\
3 & -6 & 4 & 0
\end{array}\right] \begin{array}{l}
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}-3 R_{1} \rightarrow R_{3}
\end{array}\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 3 & -5 & 6 \\
0 & -15 & -2 & -3
\end{array}\right] R_{3}+5 R_{2} \rightarrow R_{3}\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 3 & -5 & 6 \\
0 & 0 & -27 & 27
\end{array}\right]-\frac{1}{27} R_{3} \rightarrow R_{3}} \\
& {\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 3 & -5 & 6 \\
0 & 0 & 1 & -1
\end{array}\right] \begin{array}{l}
R_{2}+5 R_{3} \rightarrow R_{2} \\
R_{1}-2 R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] R_{1}-R_{2} \rightarrow R_{2}\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]} \\
& \frac{1}{3} R_{2} \rightarrow R_{2}\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & \frac{1}{3} \\
0 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Solution: $x=2, \quad y=\frac{1}{3}, \quad z=-1$

$$
\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
2 & 6 & 0 & 8 & 4 & 18 & 6
\end{array}\right] \begin{aligned}
& \\
& R_{2}-2 R_{1} \rightarrow R_{2} \\
& R_{4}-2 R_{1} \rightarrow R_{4}
\end{aligned}\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right]-R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right] \begin{aligned}
& R_{3}-5 R_{2} \rightarrow R_{3} \\
& R_{4}-4 R_{2} \rightarrow R_{4}
\end{aligned}\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right] \frac{1}{6} R_{4} \rightarrow R_{4}
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3}
\end{array}\right] R_{2}-3 R_{4} \rightarrow R_{2}\left[\begin{array}{rrrrrrr}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3}
\end{array}\right] R_{1}+2 R_{2} \rightarrow R_{1}
$$

$$
\left[\begin{array}{lllllll}
1 & 3 & 0 & 4 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3}
\end{array}\right] R_{3} \leftrightarrow R_{4}\left[\begin{array}{ccccccc}
1 & 3 & 0 & 4 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\text { The new system is }\left\{\begin{array}{rlrl}
x_{1}+3 x_{2} & +4 x_{4}+2 x_{5} & =0 \\
& & x_{3}+2 x_{4} & \\
& & x_{6} & =\frac{1}{3}
\end{array}\right.
$$

Or $\left\{\begin{array}{l}x_{1}=-3 x_{2}-4 x_{4}-2 x_{5} \\ x_{3}=-2 x_{4} \\ x_{6}=\frac{1}{3}\end{array}\right.$
Solution: $x_{1}=-3 r-4 s-2 t, \quad x_{2}=r, \quad x_{3}=-2 s, \quad x_{4}=s, \quad x_{5}=t, \quad x_{6}=\frac{1}{6}$

