F	Ouiz:	Sections	6.1	&	6.2

Richard

Linear Algebra **MATH 310** R. Hammack

December 1, 2016

Score: 10

Directions: Please answer in the space provided. No calculators. Please put all phones, etc., away.

- 1. Suppose T is a linear transformation with matrix $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$.
 - (a) State the domain of T

- (b) State the codomain of T.
- (c) Find a basis for the kernel of T.

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} x - y + 2z = 0 \\ y + 2z = 0 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix} R_1 + R_2 \rightarrow R_1 \begin{bmatrix} 1 & 0 & 4 & 0 \end{bmatrix} X = -4Z$$

$$\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \end{bmatrix} Y = -2Z$$

$$\ker(T) = \left\{ \begin{bmatrix} -47 \\ -27 \\ 2 \end{bmatrix} : Z \in \mathbb{R} \right\} = \left\{ Z \begin{bmatrix} -4 \\ -2 \end{bmatrix} : Z \in \mathbb{R} \right\} = \operatorname{Span}\left[\begin{bmatrix} -47 \\ -2 \\ 1 \end{bmatrix} \right]$$

(d) nullity(T) =
$$d_{im}(\ker(T)) = 1$$

(d)
$$\operatorname{nullity}(T) = \operatorname{dim}(\operatorname{Ret}(T))$$

(e) $\operatorname{rank}(T) = 3 - \operatorname{nullity}(T) = 2$
(f) In T and to and $2 + 2 = 2$

(f) Is Tone-to-one? NO because
$$\ker(T) \neq \{\vec{o}\}\$$
(g) Is Tonto? [YES] because $\ker(T) = 2 = \{\dim(ASION) | (of codomain.) \}$

(h) State the range of T₁

2. Suppose $S: \mathbb{R}^4 \to \mathbb{R}^6$ is a linear transformation, and rank(S) = 3. What is the nullity of S? Explain.

$$\Rightarrow$$
 | nullity(s) = 1