Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided.
Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose a matrix A has 45 columns and its rows are linearly independent.

Also, the set $\left\{\mathbf{x} \in \mathbb{R}^{45} \mid A \mathbf{x}=\mathbf{0}\right\}$ is 7-dimensional. How many rows does A have? Explain.
The problems states the nullspace $N(A)=\left\{\mathbf{x} \in \mathbb{R}^{45} \mid A \mathbf{x}=\mathbf{0}\right\}$ is 7-dimensional, so nullity $(A)=7$.
Since the rows of A are linearly independent, $\operatorname{then} \operatorname{rank}(A)$ equals the number of rows in A. Then:

$$
\begin{gathered}
45=\operatorname{rank}(A)+\operatorname{nullity}(A) \\
45=(\text { number of rows of } A)+7
\end{gathered}
$$

It follows that A has 38 rows.
2. The set $B=\left\{1+x+x^{2}, 2+x+x^{2}, 1-x+x^{2}\right\}$ is a basis for P_{2}.

Find the coordinate vector $\left[3+x^{2}\right]_{B}$.

Note $\left[3+x^{2}\right]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$, where $3+x^{2}=c_{1}\left(1+x+x^{2}\right)+c_{2}\left(2+x+x^{2}\right)+c_{3}\left(1-x+x^{2}\right)$.
Thus we seek numbers c_{1}, c_{2}, and c_{3} for which $3+x^{2}=\left(c_{1}+2 c_{2}+c_{3}\right)+\left(c_{1}+c_{2}-c_{3}\right) x+\left(c_{1}+c_{2}+c_{3}\right) x^{2}$.
This gives rise to the following system. $\left\{\begin{array}{l}c_{1}+2 c_{2}+c_{3}=3 \\ c_{1}+c_{2}-c_{3}=0 \\ c_{1}+c_{2}+c_{3}=1\end{array}\right.$
Solving in the usual way gives
$\left[\begin{array}{rrrr}1 & 2 & 1 & 3 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] \underset{\substack{ \\R_{2}-R_{1} \\ R_{3}-R_{1} \\ \longrightarrow}}{\substack{2 \\ \hline}}\left[\begin{array}{rrrr}1 & 2 & 1 & 3 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & 0 & -2\end{array}\right] \stackrel{R_{2} \leftrightarrow R_{3}}{\longrightarrow}\left[\begin{array}{rrrr}1 & 2 & 1 & 3 \\ 0 & -1 & 0 & -2 \\ 0 & -1 & -2 & -3\end{array}\right] \underset{\longrightarrow}{-R_{2} \rightarrow R_{2}}$
$\left[\begin{array}{rrrr}1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & -1 & -2 & -3\end{array}\right] \stackrel{\substack{R_{1}-2 R_{2} \rightarrow R_{1} \\ R_{3}+R_{2} \rightarrow R_{3}}}{\longrightarrow}\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & -1\end{array}\right] \stackrel{-\frac{1}{2} R_{3} \rightarrow R_{3}}{\longrightarrow}\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right] \xrightarrow{R_{1}-R_{3} \rightarrow R_{1}}$
$\left[\begin{array}{rrrr}1 & 0 & 0 & -3 / 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right]$ We get $c_{1}=-3 / 2, \quad c_{2}=3$ and $c_{3}=1 / 2$.
Therefore $\left[3+x^{2}\right]_{B}=\left[\begin{array}{c}-3 / 2 \\ 2 \\ 1 / 2\end{array}\right]$.

