Linear Algebra	Quiz for Sections 4.6 and 4.7	November 11, 2006
Name:	R. Hammack	Score:

Directions: Please answer all questions in the space provided.

Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose a matrix A has 45 columns and its rows are linearly independent. Also, the set $\{\mathbf{x} \in \mathbb{R}^{45} | A\mathbf{x} = \mathbf{0}\}$ is 7-dimensional. How many rows does A have? Explain.

The problems states the nullspace $N(A) = \{ \mathbf{x} \in \mathbb{R}^{45} \mid A\mathbf{x} = \mathbf{0} \}$ is 7-dimensional, so nullity(A) = 7. Since the rows of A are linearly independent, then rank(A) equals the number of rows in A. Then:

 $45 = \operatorname{rank}(A) + \operatorname{nullity}(A)$

45 = (number of rows of A) + 7

It follows that A has 38 rows.

2. The set $B = \{1 + x + x^2, 2 + x + x^2, 1 - x + x^2\}$ is a basis for P_2 . Find the coordinate vector $[3 + x^2]_B$.

Note
$$[3+x^2]_B = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
, where $3+x^2 = c_1(1+x+x^2) + c_2(2+x+x^2) + c_3(1-x+x^2)$.

Thus we seek numbers c_1, c_2 , and c_3 for which $3 + x^2 = (c_1 + 2c_2 + c_3) + (c_1 + c_2 - c_3)x + (c_1 + c_2 + c_3)x^2$.

This gives rise to the following system. $\begin{cases} c_1 + 2c_2 + c_3 = 3\\ c_1 + c_2 - c_3 = 0\\ c_1 + c_2 + c_3 = 1 \end{cases}$

Solving in the usual way gives

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1 \to R_2} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & 0 & -2 \end{bmatrix} \xrightarrow{R_2 \to R_3} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & 0 & -2 \\ 0 & -1 & -2 & -3 \end{bmatrix} \xrightarrow{-R_2 \to R_2} \xrightarrow{\rightarrow} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & 0 & -2 \\ 0 & -1 & -2 & -3 \end{bmatrix} \xrightarrow{R_1 - 2R_2 \to R_1} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & -1 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_3 \to R_3} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1/2 \end{bmatrix} \xrightarrow{R_1 - R_3 \to R_1} \xrightarrow{R_1 - 2R_2 \to R_3} \xrightarrow{R_1 - 2R_2 \to R_3} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & -1 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_3 \to R_3} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1/2 \end{bmatrix} \xrightarrow{R_1 - R_3 \to R_1} \xrightarrow{R_1 - 2R_2 \to R_3} \xrightarrow{R_1 - 2R_2 \to R_3} \xrightarrow{R_1 - 2R_2 \to R_3} \xrightarrow{R_1 - 2R_3 \to R_3} \xrightarrow{R_1$$